-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsaes.py
250 lines (196 loc) · 7.97 KB
/
saes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# pip3 install pyfinite
from pyfinite import ffield
class SAES:
def __init__(self, key):
# generator za F_16 = F_2[x]/x^4+x+1
X_generator = 0b10011
# generator za F_2[y]/y^4+1
Y_generator = 0b10001
# generator za F_16[z]/z^2+1
Z_generator = 0b101
# polinom a(y) = y^3+y^2+1 za funkciju S
self.a = 0b1101
# polinom b(y) = y^3+1 za funkciju S
self.b = 0b1001
# Polja sa odgovarajucim generatorima
self.X_field = ffield.FField(4, gen=X_generator, useLUT=0)
self.Y_field = ffield.FField(4, gen=Y_generator, useLUT=0)
self.Z_field = ffield.FField(4, gen=Z_generator, useLUT=0)
# inicijalizacija S tabele
self._init_S()
# prosirivanje kljuca
self._extend_key(key)
def _init_S(self):
self.S_box = {}
self.S_box_inv = {}
for i in range(16):
# Prvo odredjujemo inverz broja i u polju X
if i == 0:
N = 0b0
else:
N = self.X_field.Inverse(i)
# zapisujemo inverz kao element polja Y
Ny = self.Y_field.Multiply(N, 1)
# vrsimo transformaciju Ny u polju Y: Ny*a(y) + b(y)
s = self.Y_field.Add(self.Y_field.Multiply(self.a, Ny), self.b)
# upisujemo vrednost u tabelu
self.S_box[i] = s
self.S_box_inv[s] = i
def S(self, x):
return self.S_box[x]
def S_inv(self, x):
return self.S_box_inv[x]
# funkcija SubNib
def _sub_nib(self, nibble_pair):
n1 = (0b11110000 & nibble_pair) >> 4
n2 = (0b1111 & nibble_pair)
n1_sub = self.S(n1)
n2_sub = self.S(n2)
return n1_sub * 16 + n2_sub
# funkcija RotNib
def _rot_nib(self, nibble_pair):
n1 = (0b11110000 & nibble_pair) >> 4
n2 = (0b1111 & nibble_pair)
return n2 * 16 + n1
# pretvaranje bitova u matricu koja opisuje jedno stanje
def _bytes_to_matrix(self, byte_array):
return [
[(byte_array[0] & 0b11110000) >> 4, (byte_array[1] & 0b11110000) >> 4],
[(byte_array[0] & 0b1111), (byte_array[1] & 0b1111)]
]
# funkcija za prosirivanje kljuca
def _extend_key(self, key):
if len(key) != 2:
raise Exception('Invalid key length')
W = [ord(key[0]), ord(key[1]), 0, 0, 0, 0]
RC = []
x2 = self.X_field.ConvertListToElement([0,1,0,0])
for i in range(1,4):
x_i = [0,0,0,0]
x_i[-i-1] = 1
xi = self.X_field.ConvertListToElement(x_i)
RC.append(self.X_field.Multiply(xi, x2))
RCON = [0] + [rc * 16 for rc in RC]
for i in range(2,6):
if i % 2 == 0:
k = self._sub_nib(self._rot_nib(W[i-1]))
W[i] = RCON[i//2] ^ k ^ W[i-2]
else:
W[i] = W[i-2] ^ W[i-1]
self.extended_key = W
# Ak funkcija, dodavanje kljuca bit po bit (involucija)
def _add_key(self, i, state):
k_i = self.extended_key[i * 2 : i * 2 + 2]
key_mat = self._bytes_to_matrix(k_i)
return [
[key_mat[0][0] ^ state[0][0], key_mat[0][1] ^ state[0][1]],
[key_mat[1][0] ^ state[1][0], key_mat[1][1] ^ state[1][1]]
]
# NS funkcija, primena funkcije S na svaki od niblova trenutnog stanja
def _nibble_substitution(self, state):
return [
[self.S(state[0][0]), self.S(state[0][1])],
[self.S(state[1][0]), self.S(state[1][1])]
]
# NS inverzna funkcija, primena funkcije S^-1 na svaki od niblova trenutnog stanja
def _nibble_substitution_inv(self, state):
return [
[self.S_inv(state[0][0]), self.S_inv(state[0][1])],
[self.S_inv(state[1][0]), self.S_inv(state[1][1])]
]
# SR funkcija, pomeranje drugog reda za jedno mesto (involucija)
def _shift_row(self, state):
return [
[state[0][0], state[0][1]],
[state[1][1], state[1][0]]
]
# MC funkcija, primena formule (N_i*z + N_j)*c(z) = z(N_i + N_j*x^2) + (N_i*x^2 + N_j)
# na obe kolone trenutnog stanja
def _mix_column(self, state):
Ni1 = state[0][0]
Ni2 = state[0][1]
Nj1 = state[1][0]
Nj2 = state[1][1]
return [
[
self.X_field.Add(Ni1, self.X_field.Multiply(Nj1, 0b100)),
self.X_field.Add(Ni2, self.X_field.Multiply(Nj2, 0b100))
],
[
self.X_field.Add(Nj1, self.X_field.Multiply(Ni1, 0b100)),
self.X_field.Add(Nj2, self.X_field.Multiply(Ni2, 0b100))
]
]
# MC inverzna funkcija, primena formule (N_i*z + N_j)*c^{-1}(z) = z(N_i*x^3 + N_i + N_j*x) + (N_i*x + N_jx^3 + N_j)
# na obe kolone trenutnog stanja
def _mix_column_inv(self, state):
Ni1 = state[0][0]
Ni2 = state[0][1]
Nj1 = state[1][0]
Nj2 = state[1][1]
return [
[
self.X_field.Add(self.X_field.Multiply(Ni1, 0b1001), self.X_field.Multiply(Nj1, 0b10)),
self.X_field.Add(self.X_field.Multiply(Ni2, 0b1001), self.X_field.Multiply(Nj2, 0b10))
],
[
self.X_field.Add(self.X_field.Multiply(Ni1, 0b10), self.X_field.Multiply(Nj1, 0b1001)),
self.X_field.Add(self.X_field.Multiply(Ni2, 0b10), self.X_field.Multiply(Nj2, 0b1001))
]
]
# sifrovanje 16bitnog teksta
def _encrypt_bytes(self, data):
state = self._bytes_to_matrix(data)
state = self._add_key(0, state)
state = self._nibble_substitution(state)
state = self._shift_row(state)
state = self._mix_column(state)
state = self._add_key(1, state)
state = self._nibble_substitution(state)
state = self._shift_row(state)
state = self._add_key(2, state)
return [state[0][0] * 16 + state[1][0], state[0][1] * 16 + state[1][1]]
# desifrovanje 16bitnog sifrata
def _decrypt_bytes(self, data):
state = self._bytes_to_matrix(data)
state = self._add_key(2, state)
state = self._shift_row(state)
state = self._nibble_substitution_inv(state)
state = self._add_key(1, state)
state = self._mix_column_inv(state)
state = self._shift_row(state)
state = self._nibble_substitution_inv(state)
state = self._add_key(0, state)
return [state[0][0] * 16 + state[1][0], state[0][1] * 16 + state[1][1]]
# funkcija koja dati tekst deli na grupe od 2 karaktera i svaku grupu pojedinacno sifruje
def encrypt(self, string_data):
data_bytes = [ord(x) for x in string_data]
n = len(data_bytes)
if n % 2 == 1:
data_bytes.append(ord(' '))
encrypted_bytes = []
for i in range(0, n, 2):
data_bytes_slice = data_bytes[i:i+2]
encrypted_bytes += self._encrypt_bytes(data_bytes_slice)
return ''.join([chr(x) for x in encrypted_bytes])
# funkcija koja dati sifrat deli na grupe od 2 karaktera i svaku grupu pojedinacno desifruje
def decrypt(self, encoded_data):
data_bytes = [ord(x) for x in encoded_data]
n = len(data_bytes)
decrypted_bytes = []
for i in range(0, n, 2):
data_bytes_slice = data_bytes[i:i+2]
decrypted_bytes += self._decrypt_bytes(data_bytes_slice)
return ''.join([chr(x) for x in decrypted_bytes])
def main():
message="0111110110010100"
key="0101000101100101"
A=SAES(key)
B=SAES(key)
encrypted_data=A.encrypt(str(message))
decrypted_data=B.decrypt(str(encrypted_data))
print("A sends this: ", message)
print("A encrypts message: ", encrypted_data)
print("B decrypts message: ", decrypted_data)
if __name__=="__main__":
main()