-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathvis_multi.py
250 lines (198 loc) · 9.4 KB
/
vis_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import random
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from copy import deepcopy
from utils.inceptionv1_caffe import relu_to_redirected_relu
from utils.vis_utils import simple_deprocess, load_model, set_seed, mean_loss, ModelPlus, Jitter, register_layer_hook
from utils.decorrelation import get_decorrelation_layers, RandomScaleLayer, RandomRotationLayer, CenterCropLayer
def main():
parser = argparse.ArgumentParser()
# Input options
parser.add_argument("-num_classes", type=int, default=120)
parser.add_argument("-data_mean", type=str, default='')
parser.add_argument("-layer", type=str, default='fc')
parser.add_argument("-extract_neuron", action='store_true')
parser.add_argument("-model_file", type=str, default='')
parser.add_argument("-image_size", type=str, default='224,224')
# Output options
parser.add_argument("-model_epoch", type=int, default=10)
parser.add_argument("-save_iter", type=int, default=0)
parser.add_argument("-print_iter", type=int, default=25)
parser.add_argument("-output_dir", type=str, default='')
# Optimization options
parser.add_argument( "-lr", "-learning_rate", type=float, default=1.5)
parser.add_argument("-num_iterations", type=int, default=500)
parser.add_argument("-jitter", type=str, default='16')
parser.add_argument("-fft_decorrelation", action='store_true')
parser.add_argument("-decay_power", type=float, default=1.0)
parser.add_argument("-color_decorrelation", help="", nargs="?", type=str, const="none")
parser.add_argument("-random_scale", nargs="?", type=str, const="none")
parser.add_argument("-random_rotation", help="", nargs="?", type=str, const="none")
parser.add_argument("-padding", type=int, default=0)
# Other options
parser.add_argument("-use_device", type=str, default='cuda:0')
parser.add_argument("-not_caffe", action='store_true')
parser.add_argument("-seed", type=int, default=-1)
parser.add_argument("-no_branches", action='store_true')
# Batch
parser.add_argument("-batch_size", type=int, default=10)
parser.add_argument("-start_channel", type=int, default=-1)
parser.add_argument("-end_channel", type=int, default=-1)
params = parser.parse_args()
params.image_size = [int(m) for m in params.image_size.split(',')]
main_func(params)
def main_func(params):
if params.seed > -1:
set_seed(params.seed)
if 'cuda' in params.use_device:
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
try:
model_epoch = torch.load(params.model_file, map_location='cpu')['epoch']
except:
model_epoch = params.model_epoch
cnn, norm_vals, _ = load_model(params.model_file, params.num_classes, has_branches=not params.no_branches)
if norm_vals != None and params.data_mean == '':
params.data_mean = norm_vals[0]
else:
params.data_mean = [float(m) for m in params.data_mean.split(',')]
relu_to_redirected_relu(cnn)
cnn = cnn.to(params.use_device).eval()
for param in cnn.parameters():
params.requires_grad = False
# Preprocessing net layers
mod_list = []
if params.fft_decorrelation:
if params.color_decorrelation == 'none':
try:
params.color_decorrelation = torch.load(params.model_file)['color_correlation_svd_sqrt']
except:
pass
d_layers, deprocess_img = get_decorrelation_layers(image_size=params.image_size, input_mean=params.data_mean, device=params.use_device, \
decorrelate=(params.fft_decorrelation, params.color_decorrelation), decay_power=params.decay_power)
mod_list += d_layers
else:
deprocess_img = None
if params.padding > 0:
pad_mod = nn.ReflectionPad2d(params.padding)
mod_list.append(pad_mod)
params.jitter = [int(j) for j in params.jitter.split(',')]
if params.jitter[0] > 0:
jit_mod = Jitter(params.jitter[0])
mod_list.append(jit_mod)
if params.random_scale:
scale_mod = RandomScaleLayer(params.random_scale)
mod_list.append(scale_mod)
if params.random_rotation:
rot_mod = RandomRotationLayer(params.random_rotation)
mod_list.append(rot_mod)
if len(params.jitter) > 1:
jit_mod_two = Jitter(params.jitter[1])
mod_list.append(jit_mod_two)
if params.padding > 0:
crop_mod = CenterCropLayer(params.padding)
mod_list.append(crop_mod)
prep_net = nn.Sequential(*mod_list)
# Full network
net = ModelPlus(prep_net, cnn)
# Create basic input
if params.fft_decorrelation:
input_tensor = torch.randn(*((3,) + mod_list[0].freqs_shape)).to(params.use_device) * 0.01
else:
input_tensor = torch.randn(3, *params.image_size).to(params.use_device) * 0.01
# Determine how many visualizations to generate
num_channels = get_num_channels(deepcopy(cnn), params.layer, input_tensor.detach())
# Loss module setup
loss_func = mean_loss
loss_modules = register_hook_batch_selective(net.net, params.layer, loss_func=loss_func, neuron=params.extract_neuron)
# Stack basic inputs into batch
input_tensor_list = []
for t in range(params.batch_size):
input_tensor_list.append(input_tensor.clone())
input_tensor = torch.stack(input_tensor_list)
output_basename = os.path.join(params.output_dir, params.layer.replace('/', '_'))
num_channels = num_channels if params.end_channel < 0 else params.end_channel
start_val = 0 if params.start_channel < 0 else params.start_channel
vis_count = start_val
num_channels_vis = len(range(start_val, num_channels))
num_runs = -(-num_channels_vis // params.batch_size)
print('\nVisualizing ' + str(num_channels) + ' ' + params.layer + ' channels')
print('Running optimization with ADAM\n')
for num_vis in range(num_runs):
print('Processing batch number ' + str(num_vis + 1) + '/' + str(num_runs))
loss_modules[0].channel_end += params.batch_size
if loss_modules[0].channel_end > num_channels - 1:
loss_modules[0].channel_end = num_channels
batch_count = len(range(loss_modules[0].channel_start, loss_modules[0].channel_end))
if batch_count < params.batch_size:
if params.fft_decorrelation:
input_tensor = input_tensor[:batch_count,:,:,:,:]
else:
input_tensor = input_tensor[:batch_count,:,:,:]
output_tensor = dream(net, input_tensor.clone(), params.num_iterations, params.lr, loss_modules, params.print_iter)
if deprocess_img != None:
output_tensor = deprocess_img(output_tensor)
for batch_val in range(params.batch_size):
simple_deprocess(output_tensor[batch_val], output_basename + '_c' + str(vis_count).zfill(4) + '_e' + str(model_epoch).zfill(3) + \
'.jpg', params.data_mean, params.not_caffe)
vis_count += 1
if vis_count > num_channels or batch_val == batch_count - 1:
break
loss_modules[0].channel_start += params.batch_size
# Function to maximize CNN activations
def dream(net, img, iterations, lr, loss_modules, print_iter):
img = nn.Parameter(img)
optimizer = torch.optim.Adam([img], lr=lr)
# Training loop
for i in range(1, iterations + 1):
optimizer.zero_grad()
net(img)
loss = loss_modules[0].loss
loss.backward()
if print_iter > 0 and i % print_iter == 0:
print(' Iteration', str(i) + ',', 'Loss', str(loss.item()))
optimizer.step()
return img.detach()
class ChannelRecorder(torch.nn.Module):
def forward(self, module, input, output):
self.size = list(output.size())
# Determine total number of channels
def get_num_channels(test_net, layer, test_tensor):
if test_tensor.dim() > 3:
test_tensor = test_tensor[:,:,:,1]
get_channels = ChannelRecorder()
channel_catcher = register_layer_hook(test_net, layer, get_channels)
with torch.no_grad():
test_net(test_tensor.unsqueeze(0))
num_channels = channel_catcher[0].size
return num_channels[1]
def register_hook_batch_selective(net, layer_name, loss_func=mean_loss, neuron=False):
loss_module = SimpleDreamLossHookChannels(loss_func, neuron=neuron)
return register_layer_hook(net, layer_name, loss_module)
# Define a simple forward hook to collect DeepDream loss for multiple channels
class SimpleDreamLossHookChannels(torch.nn.Module):
def __init__(self, loss_func=mean_loss, neuron=False):
super(SimpleDreamLossHookChannels, self).__init__()
self.get_loss = loss_func
self.channel_start = 0
self.channel_end = 0
self.get_neuron = neuron
def forward(self, module, input, output):
output = self.extract_neuron(output) if self.get_neuron == True else output
vis_list = list(range(self.channel_start, self.channel_end))
loss = 0
for i in range(0, len(vis_list)):
if output.dim() == 2:
loss = loss + self.get_loss(output[i, vis_list[i]])
elif output.dim() == 4:
loss = loss + self.get_loss(output[i, vis_list[i], :, :])
self.loss = -loss
def extract_neuron(self, input):
x = input.size(2) // 2
y = input.size(3) // 2
return input[:, :, y:y+1, x:x+1]
if __name__ == "__main__":
main()