-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathreceiver.py
319 lines (256 loc) · 12.3 KB
/
receiver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
"""
Real-time video streaming receiver
- receive raw video from server
- receive SR models from server
- applies per-frame super-resolution and displays (stores at this stage) the high-resolution video
"""
__author__ = "Yihang Wu"
from io import BytesIO
import os
from fractions import Fraction
import argparse
import logging
import asyncio
import queue
import numpy as np
from av import VideoFrame
import torch
from aiortc import RTCIceCandidate, RTCPeerConnection, RTCSessionDescription, RTCDataChannel, MediaStreamTrack, RTCConfiguration
from aiortc.contrib.signaling import BYE, TcpSocketSignaling
from media import MediaRelay, MediaRecorderDelta, MediaBlackhole
from misc import ClassLogger, Resolution, get_ice_servers
from model import SingleNetwork
logger = logging.getLogger('receiver')
relay = MediaRelay() # a media source that relays one or more tracks to multiple consumers.
class DummyProcessor:
def process(self, image: np.ndarray) -> np.ndarray:
return image
class SuperResolutionProcessor(ClassLogger):
"""
Processor for super-resolving a frame.
The SR model is replaced by the new model presented in model queue.
"""
def __init__(self, args):
super(SuperResolutionProcessor, self).__init__('receiver')
self.model = SingleNetwork(args.model_scale, num_blocks=args.model_num_blocks,
num_channels=3, num_features=args.model_num_features)
self.load_pretrained = args.load_pretrained
self.pretrained_fp = args.pretrained_fp
self.device = 'cuda' if args.use_gpu else 'cpu'
self._model_queue = queue.SimpleQueue() # for incoming models
self._setup()
def _setup(self):
if self.device == 'cuda':
self.model = self.model.half().to(self.device)
else:
self.model = self.model.to(self.device) # pytorch conv cpu version not support fp16
# using pretrained model at receiver side is trivial (as it is replaced by a new model in short time)
if self.load_pretrained and self.pretrained_fp and os.path.exists(self.pretrained_fp):
self.model.load_state_dict(torch.load(self.pretrained_fp))
self.log_info('load pretrained model (NOT RECOMMAND)')
self.model.eval()
torch.set_grad_enabled(False)
self.log_info('finish setup')
def process(self, image: np.ndarray) -> np.ndarray:
"""
Super-resolve a frame represented in uint8 ndarray
"""
# before processing a frame, check whether the model can be updated
# current implementation checks at every frame, which can be refined later
self._update_model()
x = torch.from_numpy(image).byte().to(self.device) # (lr_height, lr_width, 3), torch.uint8
x = x.permute(2, 0, 1) # (3, lr_height, lr_width)
if self.device == 'cuda':
x = x.half() # equivalent to x.to(torch.float16)
else:
x = x.float() # equivalent to x.to(torch.float32)
x.div_(255)
x.unsqueeze_(0) # (1, 3, lr_height, lr_width)
out = self.model(x) # (1, 3, hr_height, hr_width)
out = out.data[0].permute(1, 2, 0) # (hr_height, hr_width, 3)
out = out * 255
out = torch.clamp(out, 0, 255)
out = out.byte() # transform back to torch.uint8
hr_image = out.cpu().numpy() # (hr_height, hr_width, 3)
return hr_image
def _update_model(self):
"""
Update the model using the newest model in queue.
This method is invoked in method process
"""
if self._model_queue.qsize() == 0:
return
m = self._model_queue.get_nowait()
while self._model_queue.qsize() > 0: # get the newest model
m = self._model_queue.get_nowait()
self.model.load_state_dict(torch.load(BytesIO(m)))
self.log_info('update model')
@property
def model_queue(self):
"""
A SimpleQueue object for placing newly trained models.
The model in the queue should be saved by torch.save(), and represented in bytes beforehand.
Models are loaded by torch.load(BytesIO(m)) in this class.
Returns: queue for models
"""
return self._model_queue
class VideoProcessTrack(MediaStreamTrack):
"""
A video stream track that processes frames from an another track
"""
kind = 'video'
def __init__(self, track, processor):
"""
Args:
track (): the original track to be processed
processor (SuperResolutionProcessor):
"""
super().__init__()
self.track = track
self.processor = processor
self.count = 0
async def recv(self):
"""
Generate the next VideoFrame
"""
frame = await self.track.recv() # read next frame from the original track
img = frame.to_ndarray(format='bgr24')
img = self.processor.process(img)
# rebuild a VideoFrame, preserving timing information
new_frame = VideoFrame.from_ndarray(img, format='bgr24')
new_frame.pts = frame.pts # Presentation TimeStamps, denominated in terms of timebase, here
new_frame.time_base = frame.time_base # a unit of time, here Fraction(1, 90000) (of a second)
return new_frame
async def comm_server(pc, signaling, processor, recorder_raw, recorder_sr):
"""
Receiver communicates with server.
It receives video and models from server.
Args:
pc (RTCPeerConnection): peer connection object
signaling (TcpSocketSignaling): signaling proxy. Could be other signaling tool. See aiortc.contrib.signaling for more.
processor (SuperResolutionProcessor): the processor used to conduct per-frame processing
recorder_raw (MediaRecorderDelta): the recorder for the raw video
recorder_sr (MediaRecorderDelta): the recorder for the super-resolved video
"""
@pc.on('track')
def on_track(track):
logger.info('Received track from server')
if track.kind == 'video':
recorder_raw.addTrack(relay.subscribe(track))
recorder_sr.addTrack(VideoProcessTrack(relay.subscribe(track), processor))
else:
# Not consider audio at this stage
# recorder_raw.addTrack(track)
pass
@pc.on('datachannel')
def on_datachannel(channel: RTCDataChannel):
logger.info('Received data channel: %s', channel.label)
if channel.label == 'model':
if isinstance(processor, SuperResolutionProcessor):
@channel.on('message')
def on_message(msg):
processor.model_queue.put(msg)
else:
raise NotImplementedError
# connect signaling
await signaling.connect()
# consume signaling
while True:
try:
obj = await signaling.receive()
except ConnectionRefusedError:
logger.info('Connection Refused by remote computer')
logger.info('This may be becuase the signaling server has not been set up')
break
if isinstance(obj, RTCSessionDescription):
logger.info('Received remote description')
await pc.setRemoteDescription(obj)
await recorder_raw.start()
await recorder_sr.start()
await pc.setLocalDescription(await pc.createAnswer())
await signaling.send(pc.localDescription)
elif isinstance(obj, RTCIceCandidate):
logger.info('Received remote candidate')
await pc.addIceCandidate(obj)
elif obj is BYE:
logger.info('Exiting')
break
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Conferencing peer (Receiver)')
parser.add_argument('--not-sr', action='store_true', help='Not to perform per-frame super-resolution')
parser.add_argument('--debug', action='store_true', help='Set the logging verbosity to DEBUG')
# directory
parser.add_argument('--log-dir', type=str, default='result/logs', help='Directory for logs')
parser.add_argument('--record-dir', type=str, default='result/records', help='Directory for media records')
# video
parser.add_argument('--record-sr-fn', type=str, default='sr.mp4', help='SR video record name')
parser.add_argument('--record-raw-fn', type=str, default='raw.mp4', help='Raw video record name')
parser.add_argument('--not-record-sr', action='store_true', help='Do not record SR video')
parser.add_argument('--not-record-raw', action='store_true', help='Do not record raw video')
parser.add_argument('--aspect-ratio', type=str, default='4x3', help='Aspect ratio of the video given in "[W]x[H]"')
parser.add_argument('--hr-height', type=int, default=480, help='Height of origin high-resolution video')
parser.add_argument('--lr-height', type=int, default=240, help='Height of transformed low-resolution video')
parser.add_argument('--fps', type=int, default=30)
# model
parser.add_argument('--use-gpu', action='store_true', help='Use GPU to infer. Strongly recommand to use GPU for deep network')
parser.add_argument('--model-scale', type=int, default=2)
parser.add_argument('--model-num-blocks', type=int, default=8)
parser.add_argument('--model-num-features', type=int, default=8)
# inference
parser.add_argument('--load-pretrained', action='store_true', help='Load pretrained model for super-resolution (NOT RECOMMAND)')
parser.add_argument('--pretrained-fp', type=str, help='File path to the pretrained model')
# signaling
parser.add_argument('--signaling-host', type=str, default='127.0.0.1', help='TCP socket signaling host') # 192.168.0.201
parser.add_argument('--signaling-port', type=int, default=10001, help='TCP socket signaling port')
# ICE server
parser.add_argument('--ice-config', type=str, help='ICE server configuration')
parser.add_argument('--ice-provider', type=str, default='google', help='ICE server provider')
args = parser.parse_args()
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(args.record_dir, exist_ok=True)
# logging settings
logging.basicConfig(level=logging.INFO)
logger.setLevel(level=logging.DEBUG if args.debug else logging.INFO)
# RTC
signaling = TcpSocketSignaling(args.signaling_host, args.signaling_port)
if args.ice_config is None:
logger.info('ice server is not configured')
ice_servers = None
else:
logger.info(f'configure ice server from {args.ice_provider}')
ice_servers = get_ice_servers(args.ice_config, args.ice_provider) # a list of ice servers (might be empty)
rtc_config = RTCConfiguration(iceServers=ice_servers)
pc = RTCPeerConnection(configuration=rtc_config)
aspect_ratio = Fraction(*map(int, args.aspect_ratio.split('x')))
high_resolution = Resolution.get(args.hr_height, aspect_ratio)
low_resolution = Resolution.get(args.lr_height, aspect_ratio)
# media sink
if args.record_dir and not args.not_record_raw:
recorder_raw = MediaRecorderDelta(os.path.join(args.record_dir, args.record_raw_fn),
logfile=os.path.join(args.log_dir, 'receiver_recorder_raw.log'),
width=low_resolution.width, height=low_resolution.height, fps=args.fps)
else:
recorder_raw = MediaBlackhole()
if args.record_dir and not args.not_record_sr:
recorder_sr = MediaRecorderDelta(os.path.join(args.record_dir, args.record_sr_fn),
logfile=os.path.join(args.log_dir, 'receiver_recorder_sr.log'),
width=high_resolution.width, height=high_resolution.height, fps=args.fps)
else:
recorder_sr = MediaBlackhole()
# SR processor
if args.not_sr:
processor = DummyProcessor()
else:
processor = SuperResolutionProcessor(args)
# run receiver
loop = asyncio.get_event_loop()
try:
loop.run_until_complete(comm_server(pc, signaling, processor, recorder_raw, recorder_sr))
except KeyboardInterrupt:
logger.info('keyboard interrupt while running receiver')
finally:
# cleanup
loop.run_until_complete(recorder_raw.stop())
loop.run_until_complete(recorder_sr.stop())
loop.run_until_complete(signaling.close())
loop.run_until_complete(pc.close()) # pc closes then no track