-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabel_dataset.py
30 lines (18 loc) · 916 Bytes
/
label_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from load_data import loadData
import os
import numpy as np
import matplotlib.pyplot as plt
#data_dir = 'dataset\dataset_cleaned'
#output_dir = 'dataset\dataset_labeled'
data_dir = r'dataset\NORMALIZED_DATASETS\dataset_normalized'
output_dir = r'dataset\NORMALIZED_DATASETS\dataset_normalized_labeled'
loaddata = loadData(data_dir)
dataStore, labels, filenames = loaddata.loadData_twoClasses_leg_NONORMALIZE(threshold_value=0.5, threshold_width=0.3)
#print(dataStore, labels)
#print(len(dataStore), len(labels))
for data, label, filename in zip(dataStore, labels, filenames):
#print(filename, label)
print(min(data[0]), max(data[0]), min(data[1]), max(data[1]), min(data[2]), max(data[2]), min(data[3]), max(data[3]))
output_filename = filename.split('.')[0] + '_label=' + str(label) + '.npy'
output_filepath = os.path.join(output_dir, output_filename)
np.save(output_filepath, data)