-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormalize_dataset.py
23 lines (17 loc) · 1012 Bytes
/
normalize_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from load_data import loadData
import os
import numpy as np
import matplotlib.pyplot as plt
data_dir = r'dataset\dataset_cleaned'
output_dir = r'dataset\NORMALIZED_DATASETS\dataset_normalized'
for filename in os.listdir(data_dir):
input_filepath = os.path.join(data_dir, filename)
output_filepath = os.path.join(output_dir, filename)
signal = np.load(input_filepath)
signal = np.array(signal, dtype=np.float32)
print(min(signal[0]), max(signal[0]), min(signal[1]), max(signal[1]), min(signal[2]), max(signal[2]), min(signal[3]), max(signal[3]))
for ch in range(4):
#signal[ch, :] = signal[ch, :].astype(np.float32) / (max([abs(min(signal[ch, :])), abs(max(signal[ch, :]))]))
signal[ch, :] = 2 * ( ( (signal[ch, :] - min(signal[ch, :])) / (max(signal[ch, :]) - min(signal[ch, :])) ) -0.5)
print(min(signal[0]), max(signal[0]), min(signal[1]), max(signal[1]), min(signal[2]), max(signal[2]), min(signal[3]), max(signal[3]))
np.save(output_filepath, signal)