-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_metrici_time.py
130 lines (104 loc) · 3.98 KB
/
utils_metrici_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
'''
This is a file containing various fucntions that can be applied to the given signal slice for FEATURE EXTRATION
FEATURE EXTRACTION
'''
import librosa
import numpy as np
import os
from scipy.stats import skew
import matplotlib.pyplot as plt
sr = 512
def adapt_signal(signal):
signal = signal.astype(np.float32) / 128
return signal
'''
def mfcc(signal, number_of_coeffincients):
#print(np.max(signal), np.min(signal), type(signal[0]))
signal = np.array(signal, dtype=float)
mfccs = librosa.feature.mfcc(y=signal, sr=sr, n_mfcc=number_of_coeffincients)
return mfccs
'''
def mean_absolute_value(signal):
return np.mean(np.abs(signal))
def zero_crossing_rate(signal):
zero_crossings = np.where(np.diff(np.sign(signal)))[0]
return len(zero_crossings) / len(signal)
def slope_sign_changes(signal):
slope_changes = 0
for i in range(1, len(signal)-1):
if (signal[i] - signal[i-1]) * (signal[i] - signal[i+1]) > 0:
slope_changes += 1
return slope_changes / len(signal)
def root_mean_square(signal):
return np.sqrt(np.mean(signal**2))
def waveform_length(signal):
return np.sum(np.abs(np.diff(signal)))
def calculate_skewness(signal):
return skew(signal)
def hjorth_activity_variance(signal):
return np.var(signal)
def isemg(signal):
abs_emg = np.abs(signal)
sqrt_emg = np.sqrt(abs_emg)
isemg = np.sum(sqrt_emg)
return isemg
if __name__ == '__main__':
#input_dir = r'evolutie_parametrii_in_timp\divided_window_250ms_overlap_125ms'
input_dir = r'evolutie_parametrii_in_timp\divided_window_500ms_overlap_250ms'
#input_dir = r'evolutie_parametrii_in_timp\divided_window_750ms_overlap_375ms'
#input_dir = r'evolutie_parametrii_in_timp\divided_window_100ms_overlap_50ms'
first_mfcc = []
second_mfcc = []
mae_list = []
zcr_list = []
ssc_list = []
rms_list = []
wl_list = []
skew_list = []
hjorth_activity_variance_list = []
isemg_list = []
files = os.listdir(input_dir)
files.sort()
for chanel_idx in range(4):
for filename in files:
filepath = os.path.join(input_dir, filename)
signal = np.load(os.path.join(input_dir, filename))[chanel_idx, :]
#print(signal.shape)
signal = adapt_signal(signal)
#m1, m2 = mfcc(signal=signal, number_of_coeffincients=2)
#first_mfcc.append(m1)
#second_mfcc.append(m2)
mae_list.append(mean_absolute_value(signal))
zcr_list.append(zero_crossing_rate(signal))
ssc_list.append(slope_sign_changes(signal))
rms_list.append(root_mean_square(signal))
wl_list.append(waveform_length(signal))
skew_list.append(calculate_skewness(signal))
hjorth_activity_variance_list.append(hjorth_activity_variance(signal))
isemg_list.append(isemg(signal))
# Create a figure and a set of subplots
fig, axs = plt.subplots(9, 1, figsize=(9, 20))
# features_list = [mae_list, zcr_list, ssc_list, rms_list, wl_list, skew_list, hjorth_activity_variance_list, isemg_list]
# for feature_list in features_list:
# support_time_vector = np.arange(1, len(feature_list) + 1)
# correlation = np.corrcoef(feature_list, support_time_vector)[0, 1]
# print(correlation)
axs[0].plot(mae_list, label='MAE')
axs[0].legend()
axs[1].plot(zcr_list, label='ZCR')
axs[1].legend()
axs[2].plot(ssc_list, label='SSC')
axs[2].legend()
axs[3].plot(rms_list, label='RMS')
axs[3].legend()
axs[4].plot(wl_list, label='Waveform Length')
axs[4].legend()
axs[5].plot(skew_list, label='Skewness')
axs[5].legend()
axs[6].plot(hjorth_activity_variance_list, label='Variance(Hjorth activity)')
axs[6].legend()
axs[7].plot(isemg_list, label='ISEMG')
axs[7].legend()
# Enhance layout
#plt.tight_layout()
plt.show()