-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_mem.py
197 lines (163 loc) · 6.64 KB
/
detect_mem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
from tqdm import tqdm
from pathlib import Path
import pandas as pd
import torch
from optim_utils import *
from io_utils import *
from local_sd_pipeline import LocalStableDiffusionPipeline
from diffusers import DDIMScheduler, UNet2DConditionModel
import yaml
# from parse_args import get_config
from get_dataset_mimic_cxr import MimicCXRDataset
def main(args):
# load diffusion model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device: {device}")
with open("unet_peft.yaml") as file:
yaml_data_peft = yaml.safe_load(file)
args.unet_id = yaml_data_peft[args.peft_method]
print("PEFT Method: ", args.peft_method)
print("Loading UNet model: ", args.unet_id)
if args.unet_id is not None:
unet = UNet2DConditionModel.from_pretrained(
args.unet_id, torch_dtype=torch.float16
)
pipe = LocalStableDiffusionPipeline.from_pretrained(
args.model_id,
unet=unet,
torch_dtype=torch.float16,
safety_checker=None,
requires_safety_checker=False,
)
else:
pipe = LocalStableDiffusionPipeline.from_pretrained(
args.model_id,
torch_dtype=torch.float16,
safety_checker=None,
requires_safety_checker=False,
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(device)
# dataset
set_random_seed(args.gen_seed)
# dataset, prompt_key = get_dataset(args.dataset, pipe)
# MIMIC DATASET HERE
# Import CSV path from the YAML file
with open("data_config.yaml") as file:
yaml_data = yaml.safe_load(file)
args.train_data_path = yaml_data["train_csv"]
args.val_data_path = yaml_data["val_csv"]
args.test_data_path = yaml_data["test_csv"]
args.counts_data_path = yaml_data["counts_csv"]
args.images_path_train = Path(yaml_data["images_path_train"])
args.images_path_val = Path(yaml_data["images_path_val"])
if args.run_on_frequent_samples or args.run_on_rare_samples:
# df = pd.read_excel(args.train_data_path)
print("Reading Counts Dataframe")
df = pd.read_csv(args.counts_data_path)
ALL_COUNTS = df["Count"].to_list()
ALL_UNIQUE_PROMPTS = list(set(df["Text"].tolist()))
else:
df = pd.read_excel(args.train_data_path)
if args.use_findings:
ALL_UNIQUE_PROMPTS = list(set(df["findings"].tolist()))
else:
if args.run_on_frequent_samples:
if args.by_percentile:
percentile_index = int(
len(ALL_COUNTS) * 0.05
) # Selecting prompts in the top 5 percentile by frequncy
ALL_UNIQUE_PROMPTS = ALL_UNIQUE_PROMPTS[:percentile_index]
else:
ALL_UNIQUE_PROMPTS = list(set(df["Text"].tolist()))
# Select top 50
ALL_UNIQUE_PROMPTS = ALL_UNIQUE_PROMPTS[:50]
elif args.run_on_rare_samples:
if args.by_percentile:
percentile_index = int(len(ALL_COUNTS) * 0.05)
ALL_UNIQUE_PROMPTS = ALL_UNIQUE_PROMPTS[-percentile_index:]
else:
ALL_UNIQUE_PROMPTS = list(set(df["Text"].tolist()))
# Select bottom 50
ALL_UNIQUE_PROMPTS = ALL_UNIQUE_PROMPTS[-50:]
else:
ALL_UNIQUE_PROMPTS = list(set(df["text"].tolist()))
if args.run_on_full_dataset:
args.end = len(ALL_UNIQUE_PROMPTS)
else:
args.end = min(args.end, len(df))
# generation
print("generation")
all_metrics = ["uncond_noise_norm", "text_noise_norm"]
all_tracks = []
for i in tqdm(range(args.start, args.end)):
try:
seed = i + args.gen_seed
# prompt = dataset[i][prompt_key]
# prompt = train_dataset[i]["text"]
prompt = ALL_UNIQUE_PROMPTS[i]
print("Prompt: ", prompt)
### generation
set_random_seed(seed)
outputs, track_stats = pipe(
prompt,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
num_images_per_prompt=args.num_images_per_prompt,
track_noise_norm=True,
)
uncond_noise_norm, text_noise_norm = (
track_stats["uncond_noise_norm"],
track_stats["text_noise_norm"],
)
curr_line = {}
for metric_i in all_metrics:
values = locals()[metric_i]
curr_line[f"{metric_i}"] = values
curr_line["prompt"] = prompt
all_tracks.append(curr_line)
print("\n")
except:
continue
os.makedirs("det_outputs", exist_ok=True)
# write_jsonlines(all_tracks, f"det_outputs/{args.run_name}.jsonl")
if args.run_on_frequent_samples:
write_jsonlines(
all_tracks,
"det_outputs/{}_frequent.jsonl".format(
args.run_name + "_" + args.peft_method
),
)
elif args.run_on_rare_samples:
write_jsonlines(
all_tracks,
"det_outputs/{}_rare.jsonl".format(args.run_name + "_" + args.peft_method),
)
else:
write_jsonlines(
all_tracks,
"det_outputs/{}.jsonl".format(args.run_name + "_" + args.peft_method),
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="diffusion memorization")
parser.add_argument("--run_name", default="test")
parser.add_argument("--dataset", default=None)
parser.add_argument("--start", default=0, type=int)
parser.add_argument("--end", default=500, type=int)
parser.add_argument("--image_length", default=512, type=int)
parser.add_argument("--model_id", default="CompVis/stable-diffusion-v1-4")
parser.add_argument("--unet_id", default=None)
parser.add_argument("--peft_method", type=str, default="full")
parser.add_argument("--with_tracking", action="store_true")
parser.add_argument("--num_images_per_prompt", default=4, type=int)
parser.add_argument("--guidance_scale", default=7.5, type=float)
parser.add_argument("--num_inference_steps", default=50, type=int)
parser.add_argument("--gen_seed", default=0, type=int)
parser.add_argument("--run_on_full_dataset", action="store_true")
parser.add_argument("--use_findings", action="store_true")
parser.add_argument("--run_on_frequent_samples", action="store_true")
parser.add_argument("--run_on_rare_samples", action="store_true")
parser.add_argument("--by_percentile", action="store_true")
args = parser.parse_args()
main(args)