Skip to content

Latest commit

 

History

History
84 lines (66 loc) · 2.74 KB

README.md

File metadata and controls

84 lines (66 loc) · 2.74 KB

This is an useful toolbox for the developers who need to process the point cloud collected by various types of sensors like LiDAR.

Dependencies

  • python
  • numpy
  • open3d
  • opencv
pip install open3d
pip install numpy
pip install opencv-contrib-python

Usage

python tutorial.py

tutorial.py contains several functions, you can comment/uncomment different functions to run the corresponding demos. Here are the functions:

  • vis_sequential_object() will read the configs and visualize the point cloud with OBB(Oriented Bounding Boxes) in a blocking manner (the non-blocking program is still under developing)

    • N: Next Frame
    • B: Previous Frame vis_point_cloud_with_obbs
  • vis_sequential_sem_inst_motion() will read the configs and visualize the point cloud with Semantic/Instance/Motion labels in a non-blocking manner

    • N: Next Frame
    • B: Previous Frame
    • S: Semantic Mode
    • I: Instance Mode
    • M: Motion Mode

vis_cloud_with_semantic vis_cloud_with_instance vis_cloud_with_motion

  • test_visualizer() contains various kinds of visualizations, you can dive into it. vis_compare_two_cloud

  • test_dataloader_visualizer() contains dataloader that can load point cloud from .bin or .pcd vis_cropped_point_cloud

  • test_kitti_mapper() reads the poses.txt, calib.txt,*.bin,*.label and build a dense map vis_kitti_mapper

  • test_bev() convert the point cloud to BEV(Bird's Eye View) image vis_lidar_to_bev

Developing

The functions of this toolbox include:

  • dataloader
    • load xyz from *.bin
    • load xyzi from *.bin
    • load xyzi and crop to certain ROI from *.bin
    • load semantic/instance label from *.label
    • load xyz from *.pcd
    • load xyz and downsize from *.pcd
    • load xyzi from *.pcd
    • load xyzi and downsize from *.pcd
  • visualize single frame data
    • visualize point cloud $[n,3]$
    • visualize point cloud with label $[n,3]$ + $[n,1]$
    • ……
  • visualize sequential data
    • semantic segmentation
    • instance segmentation
    • moving object segmentation
    • object detection blocking
    • object detection non-blocking
  • mapping with sequential data and poses
    • mapping with kitti-like data
  • visualize kitti point cloud map
  • lidar-bev transform

Contribute

https://github.com/chaomath/open3d-kitti-visualization https://github.com/PRBonn/semantic-kitti-api https://github.com/yknapp/lidar2bev