-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhw02.tex
202 lines (153 loc) · 5.76 KB
/
hw02.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
\documentclass{homework}
\usepackage[a4paper,margin=1in]{geometry}
\usepackage{kotex}
\usepackage{environ}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{braket}
\usepackage{graphicx}
\usepackage{tikz}
\usepackage{karnaugh-map}
\newcommand{\hwname}{이주헌}
\newcommand{\hwemail}{20191629}
\newcommand{\hwnum}{2}
\newcommand{\hwtype}{Homework}
\newcommand{\hwclass}{CSE3015}
\begin{document}
\maketitle
\question*{Let $F(A, B, C, D) = BD + B'D'$ is given.}
\begin{itemize}
\item Make given function to canonical SOP form.
The truth table for the function $F$ is:
\begin{tabular}{cccc|c|c}
$A$ & $B$ & $C$ & $D$ & $F$ & Minterm \\
\hline
T & T & T & T & T & $m_{15}$ \\
T & T & T & F & F & $m_{14}$ \\
T & T & F & T & T & $m_{13}$ \\
T & T & F & F & F & $m_{12}$ \\
T & F & T & T & F & $m_{11}$ \\
T & F & T & F & T & $m_{10}$ \\
T & F & F & T & F & $m_9$ \\
T & F & F & F & T & $m_8$ \\
F & T & T & T & T & $m_7$ \\
F & T & T & F & F & $m_6$ \\
F & T & F & T & T & $m_5$ \\
F & T & F & F & F & $m_4$ \\
F & F & T & T & F & $m_3$ \\
F & F & T & F & T & $m_2$ \\
F & F & F & T & F & $m_1$ \\
F & F & F & F & T & $m_0$ \\
\end{tabular}
From the truth table above, the 1-minterm indices are $\{0, 2, 5, 7, 8, 10, 13, 15\}$. Hence, the canonical SOP form can be written as:
$$
F_1(A, B, C, D) = \sum{(0, 2, 5, 7, 8, 10, 13, 15)}
= m_0 + m_2 + m_5 + m_7 + m_8 + m_{10} + m_{13} + m_{15}
$$
\item{With canonical SOP form, fill up the Karnaugh Map.}
\begin{center}
\begin{karnaugh-map}[4][4][1][$AB$][$CD$]
\minterms{0, 2, 5, 7, 8, 10, 13, 15}
\end{karnaugh-map}
\end{center}
\item{Using the Karnaugh Map, find the simplest(shortest) SOP form. Show each step and detail.}
The Karnaugh Map given by the previous step looks like this:
\begin{center}
\begin{karnaugh-map}[4][4][1][$AB$][$CD$]
\minterms{0, 2, 5, 7, 8, 10, 13, 15}
\end{karnaugh-map}
\end{center}
Here, it is pretty obvious that we can group the four 1's in the middle into an implicant group as follows:
\begin{center}
\begin{karnaugh-map}[4][4][1][$AB$][$CD$]
\minterms{0, 2, 5, 7, 8, 10, 13, 15}
\implicant{5}{15}
\end{karnaugh-map}
\end{center}
Considering that Karnaugh Map can ``wrap around'' in all four directions, we can connect the four corner cells into an implicant group as well:
\begin{center}
\begin{karnaugh-map}[4][4][1][$AB$][$CD$]
\minterms{0, 2, 5, 7, 8, 10, 13, 15}
\implicant{5}{15}
\implicantcorner
\end{karnaugh-map}
\end{center}
Since all two implicants are not included in any other implicants, and include minterms that are not included in any other prime implicants, we can say they all are \textbf{essential prime implicants}.
The red implicant represents $BD$, and the green implicant represents $B'D'$. Therefore, connecting these two implicants with logical OR gives the following shortest SOP form:
$$
F(A, B, C, D) = BD + B'D'
$$
\end{itemize}
\question*{Let $G(A, B, C, D) = (A + C)(B' + C' + D')(B + C' + D)$ is given.}
\begin{itemize}
\item Make given function to canonical POS form.
The truth table for the function $G$ is:
\begin{tabular}{cccc|c|c}
$A$ & $B$ & $C$ & $D$ & $G$ & Maxterm \\
\hline
T & T & T & T & F & $M_{15}$ \\
T & T & T & F & T & $M_{14}$ \\
T & T & F & T & T & $M_{13}$ \\
T & T & F & F & T & $M_{12}$ \\
T & F & T & T & T & $M_{11}$ \\
T & F & T & F & F & $M_{10}$ \\
T & F & F & T & T & $M_9$ \\
T & F & F & F & T & $M_8$ \\
F & T & T & T & F & $M_7$ \\
F & T & T & F & T & $M_6$ \\
F & T & F & T & F & $M_5$ \\
F & T & F & F & F & $M_4$ \\
F & F & T & T & T & $M_3$ \\
F & F & T & F & F & $M_2$ \\
F & F & F & T & F & $M_1$ \\
F & F & F & F & F & $M_0$ \\
\end{tabular}
From the truth table above, the 0-maxterm indices are $\{0, 1, 2, 4, 5, 7, 10, 15\}$. Hence, the canonical POS form can be written as:
$$
G_1(A, B, C, D) = \prod{(0, 1, 2, 4, 5, 7, 10, 15)}
= M_0M_1M_2M_4M_5M_7M_{10}M_{15}
$$
\item{With canonical POS form, fill up the Karnaugh Map.}
\begin{center}
\begin{karnaugh-map}[4][4][1][$CD$][$AB$]
\maxterms{0, 1, 2, 4, 5, 7, 10, 15}
\end{karnaugh-map}
\end{center}
\item{Using the Karnaugh Map, find the simplest(shortest) SOP form. Show each step and detail.}
The Karnaugh Map given by the previous step looks like this:
\begin{center}
\begin{karnaugh-map}[4][4][1][$CD$][$AB$]
\maxterms{0, 1, 2, 4, 5, 7, 10, 15}
\end{karnaugh-map}
\end{center}
The upper-left corner has four 0-maxterms arranged like a square, so we can put them in an implicant group.
\begin{center}
\begin{karnaugh-map}[4][4][1][$CD$][$AB$]
\maxterms{0, 1, 2, 4, 5, 7, 10, 15}
\implicant{0}{5}
\end{karnaugh-map}
\end{center}
On the third column, there are two maxterms in a line. They can put into an implicant group as well.
\begin{center}
\begin{karnaugh-map}[4][4][1][$CD$][$AB$]
\maxterms{0, 1, 2, 4, 5, 7, 10, 15}
\implicant{0}{5}
\implicant{7}{15}
\end{karnaugh-map}
\end{center}
Again, considering that Karnaugh Map can ``wrap around'' in all four directions, we can put two in the last column into their own implicant group.
\begin{center}
\begin{karnaugh-map}[4][4][1][$CD$][$AB$]
\maxterms{0, 1, 2, 4, 5, 7, 10, 15}
\implicant{0}{5}
\implicant{7}{15}
\implicantedge{2}{2}{10}{10}
\end{karnaugh-map}
\end{center}
Since all two implicants are not included in any other implicants, and include maxterms that are not included in any other prime implicants, we can say they all are \textbf{essential prime implicants}.
For the red implicant, we find terms $A'$ and $C'$. Taking their complement and connecting them with logical OR, we find the red implicant represents $A + C$. For the green implicant, we find terms $B$, $C$, and $D$. Following the same procedure, we find the green implicant represents $B' + C' + D'$. Similarly, the yellow implicant represents $B + C' + D$. Connecting all terms with logical AND, we get the shortest POS form:
$$
G(A, B, C, D) = (A + C)(B' + C' + D')(B + C' + D)
$$
\end{itemize}
\end{document}