-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathradix_hash_map.h
252 lines (217 loc) · 7.38 KB
/
radix_hash_map.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#pragma once
#include <new>
#include <malloc.h>
#include "omp.h"
#include "util/search/search_util.h"
inline uint32_t get_log_size(int x) {
int cnt = 0;
for (; x > 0; cnt++) {
x >>= 1;
}
return cnt;
}
inline uint32_t get_part_size(int i) {
return i == 0 ? 0 : 1 << (get_log_size(i) - 1);
}
class RadixFilter {
BoolArray<uint64_t> psum_occupied_bool_;
graph_t *g_;
int radix_val_;
public:
explicit RadixFilter(graph_t *g) : g_(g), radix_val_(-1) {}
void Construct(int u) {
auto deg = g_->num_edges[u + 1] - g_->num_edges[u];
// if (deg > 0) { // assume deg > 0
// 1: Histogram.
constexpr int heuristic_factor = 16;
auto partition_size = get_part_size(deg) * heuristic_factor;
radix_val_ = partition_size - 1;
psum_occupied_bool_ = BoolArray<uint64_t>(partition_size);
auto radix_val = partition_size - 1;
for (auto j = g_->num_edges[u]; j < g_->num_edges[u + 1]; j++) {
auto v = g_->adj[j];
auto bucket_id = v & radix_val;
psum_occupied_bool_.set(bucket_id);
}
// }
}
bool PossibleExist(int v) {
auto bucket_id = v & radix_val_;
return psum_occupied_bool_.get(bucket_id);
}
};
class RadixSet {
vector<int> psum_arr_;
BoolArray<uint64_t> psum_occupied_bool_;
vector<int> tmp_;
vector<int> hash_table_;
graph_t *g_;
public:
explicit RadixSet(graph_t *g) : g_(g) {
psum_arr_.reserve(1024 * 1204 * 2);
hash_table_.reserve(1024 * 1204 * 2);
}
void Construct(int u) {
auto deg = g_->num_edges[u + 1] - g_->num_edges[u];
if (deg > 0) {
// 1: Histogram.
constexpr int heuristic_factor = 16;
auto partition_size = get_part_size(deg) * heuristic_factor;
psum_arr_.resize(partition_size + 1);
memset(&psum_arr_.front(), 0, psum_arr_.size() * sizeof(int));
hash_table_.resize(deg);
psum_occupied_bool_ = BoolArray<uint64_t>(psum_arr_.size());
auto radix_val = partition_size - 1;
for (auto j = g_->num_edges[u]; j < g_->num_edges[u + 1]; j++) {
auto v = g_->adj[j];
auto bucket_id = v & radix_val;
psum_arr_[bucket_id + 1]++;
psum_occupied_bool_.set(bucket_id);
}
// 2: PrefixSum.
for (auto i = 0u; i < partition_size; i++) {
psum_arr_[i + 1] += psum_arr_[i];
}
// 3: Scatter.
tmp_.resize(psum_arr_.size());
memcpy(&tmp_.front(), &psum_arr_.front(), sizeof(int) * psum_arr_.size());
for (auto j = g_->num_edges[u]; j < g_->num_edges[u + 1]; j++) {
auto v = g_->adj[j];
auto bucket_id = v & radix_val;
hash_table_[tmp_[bucket_id]++] = v;
}
} else {
psum_arr_.clear();
}
}
bool Exist(int v) {
// if (psum_arr_.empty())return false; // Assume not zero deg.
auto partition_size = psum_arr_.size() - 1;
auto radix_val = partition_size - 1;
auto bucket_id = v & radix_val;
if (psum_occupied_bool_.get(bucket_id)) {
for (auto j = psum_arr_[bucket_id]; j < psum_arr_[bucket_id + 1]; j++) {
if (hash_table_[j] == v) {
return true;
}
}
}
return false;
}
};
class RadixHashMap {
public:
using hash_entry_t = pair<int, eid_t>;
private:
graph_t *g_;
int size_;
vector<vector<int>> psum_arr_arr_;
// key (v) and eid for (u,v)
vector<vector<pair<int, eid_t>>> hash_table_arr_;
public:
explicit RadixHashMap(graph_t *g) : g_(g), size_(g_->n),
psum_arr_arr_(size_), hash_table_arr_(size_) {
// Construct in Parallel
#pragma omp parallel
{
ParallelPopulate();
#pragma omp for
for (auto u = 0; u < size_; u++) {
Construct(u);
}
}
}
void Construct(int u) {
// 1: Histogram.
auto &psum_arr = psum_arr_arr_[u];
if (psum_arr.empty())return;
auto &hash_table = hash_table_arr_[u];
auto partition_size = psum_arr.size() - 1;
auto radix_val = partition_size - 1;
for (auto j = g_->num_edges[u]; j < g_->num_edges[u + 1]; j++) {
auto v = g_->adj[j];
auto bucket_id = v & radix_val;
// assert(bucket_id < psum_arr.size());
psum_arr[bucket_id + 1]++;
}
// 2: PrefixSum.
for (auto i = 0u; i < partition_size; i++) {
psum_arr[i + 1] += psum_arr[i];
}
// 3: Scatter.
auto tmp = psum_arr;
for (auto j = g_->num_edges[u]; j < g_->num_edges[u + 1]; j++) {
auto v = g_->adj[j];
auto bucket_id = v & radix_val;
hash_table[tmp[bucket_id]++] = make_pair(v, g_->eid[j]);
}
}
void find_u_psum_table_size(int u, vector<int> *&psum_arr_ptr, vector<hash_entry_t> *&hash_table_ptr,
uint32_t &radix_val) {
psum_arr_ptr = &psum_arr_arr_[u];
hash_table_ptr = &hash_table_arr_[u];
auto partition_size = psum_arr_ptr->size() - 1;
radix_val = partition_size - 1;
}
// Assume `psum_arr` is not empty.
eid_t *get(vector<int> *psum_arr_ptr, vector<hash_entry_t> *hash_table_ptr,
uint32_t radix_val, int v) {
auto &psum_arr = *psum_arr_ptr;
auto &hash_table = *hash_table_ptr;
auto bucket_id = v & radix_val;
for (auto j = psum_arr[bucket_id]; j < psum_arr[bucket_id + 1]; j++) {
if (hash_table[j].first == v) {
return &hash_table[j].second;
}
}
return nullptr;
}
eid_t *get(int u, int v) {
auto &psum_arr = psum_arr_arr_[u];
if (psum_arr.empty())return nullptr;
auto &hash_table = hash_table_arr_[u];
auto partition_size = psum_arr.size() - 1;
auto radix_val = partition_size - 1;
auto bucket_id = v & radix_val;
for (auto j = psum_arr[bucket_id]; j < psum_arr[bucket_id + 1]; j++) {
if (hash_table[j].first == v) {
return &hash_table[j].second;
}
}
return nullptr;
}
void ParallelPopulate() {
#pragma omp for
for (auto u = 0; u < size_; u++) {
auto deg = g_->num_edges[u + 1] - g_->num_edges[u];
if (deg > 0) {
auto partition_size = get_part_size(deg);
psum_arr_arr_[u] = vector<int>(partition_size + 1, 0);
}
}
#pragma omp for
for (auto i = 0; i < size_; i++) {
hash_table_arr_[i] = vector<hash_entry_t>(g_->num_edges[i + 1] - g_->num_edges[i]);
}
}
void ManuallyFree() {
Timer free_timer;
#pragma omp parallel
{
#pragma omp for
for (auto i = 0; i < size_; i++) {
vector<int> tmp;
psum_arr_arr_[i].swap(tmp);
}
#pragma omp for
for (auto i = 0; i < size_; i++) {
vector<hash_entry_t> tmp;
hash_table_arr_[i].swap(tmp);
}
}
log_info("Free radix hash map cost: %.6lfs", free_timer.elapsed());
}
~RadixHashMap() {
ManuallyFree();
}
};