-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_5b.py
97 lines (77 loc) · 3.09 KB
/
test_5b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import scipy
import GPyOpt
import GPy
from multi_objective import MultiObjective
from multi_outputGP import multi_outputGP
from maEI import maEI
from maPI import maPI
from parameter_distribution import ParameterDistribution
from utility import Utility
from expectation_utility import ExpectationUtility
import cbo
import sys
import time
if __name__ == "__main__":
# --- Function to optimize
d = 5
def f(X):
X = np.atleast_2d(X)
fX = np.zeros((X.shape[0], 1))
for j in range(d-1):
fX [:, 0] -= 100*(X[:, j+1] - X[:, j]**2)**2 + (1 - X[:, j])**2
return fX
# --- Objective
objective = MultiObjective([f], as_list=True, output_dim=1)
# --- Space
space = GPyOpt.Design_space(space=[{'name': 'var1', 'type': 'continuous', 'domain': (-2, 2), 'dimensionality': d}])
# --- Model (Multi-output GP)
model = multi_outputGP(output_dim=1, exact_feval=[True], fixed_hyps=False)
# --- Initial design
initial_design = GPyOpt.experiment_design.initial_design('random', space, 2*(d+1))
# --- Parameter distribution
parameter_support = np.ones((1,))
parameter_dist = np.ones((1,))
parameter_distribution = ParameterDistribution(continuous=False, support=parameter_support, prob_dist=parameter_dist)
# --- Utility function
# --- Parameter distribution
parameter_support = np.ones((1,1))
parameter_dist = np.ones((1,))
parameter_distribution = ParameterDistribution(continuous=False, support=parameter_support, prob_dist=parameter_dist)
# --- Utility function
def U_func(parameter,y):
return np.dot(parameter,y)
def dU_func(parameter,y):
return parameter
U = Utility(func=U_func,dfunc=dU_func,parameter_dist=parameter_distribution,linear=True)
# --- Compute real optimum value
bounds = [(-2, 2)]*d
starting_points = 4.*np.random.rand(100, d) -2.
parameter = parameter_support[0]
def func(x):
x_copy = np.atleast_2d(x)
fx = f(x_copy)
return -fx
best_val_found = np.inf
for x0 in starting_points:
res = scipy.optimize.fmin_l_bfgs_b(func, x0, approx_grad=True, bounds=bounds)
if best_val_found > res[1]:
best_val_found = res[1]
x_opt = res[0]
print('optimum')
print(x_opt)
print('optimal value')
print(-best_val_found)
# --- Acquisition optimizer
acq_opt = GPyOpt.optimization.AcquisitionOptimizer(optimizer='lbfgs2', inner_optimizer='lbfgs2', space=space)
# --- Acquisition function
acquisition = maPI(model, space, optimizer=acq_opt, utility=U)
# --- Evaluator
evaluator = GPyOpt.core.evaluators.Sequential(acquisition)
# --- Run CBO algorithm
max_iter = 4
for i in range(1):
filename = './experiments_local/test9_PI_f_noiseless_' + str(i) + '.txt'
print(filename)
bo_model = cbo.CBO(model, space, objective, acquisition, evaluator, initial_design)
bo_model.run_optimization(max_iter=max_iter, parallel=False, plot=False, results_file=filename)