-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharguments.py
137 lines (128 loc) · 4.83 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class InitializationArguments:
"""
Initilization config, so we can train the model on a different server
"""
tokenizer_name: Optional[str] = field(
default="razhan/BPE-tokenizer",
metadata={"help": "Tokenizer attached to model."},
)
processor_name: Optional[str] = field(
default="microsoft/trocr-base-handwritten",
metadata={"help": "Processor attached to model."},
)
encoder_name: Optional[str] = field(
default="facebook/deit-base-distilled-patch16-384",
metadata={"help": "Encoder attached to model."},
)
decoder_name: Optional[str] = field(
default="razhan/roberta-base-ckb",
metadata={"help": "Decoder attached to model."},
)
max_length: Optional[int] = field(
default=128, metadata={"help": "Sequence lengths used for training."}
)
model_name: Optional[str] = field(
default="razhan/trocr-ckb", metadata={"help": "Name of the created model."}
)
push_to_hub: Optional[bool] = field(
default=True,
metadata={"help": "Push saved tokenize, processor and model to the hub."},
)
@dataclass
class TrainingArguments:
"""
Training Arguments
"""
model_ckpt: Optional[str] = field(
default="razhan/trocr-ckb",
metadata={"help": "Model name or path of model to be trained."},
)
output_dir: Optional[str] = field(
default="trocr-ckb",
metadata={
"help": "Save dir where model repo is cloned and models updates are saved to."
},
)
handwritten_dataset: bool = field(
default=False, metadata={"help": "Whether to use handwritten dataset."}
)
root_dir: Optional[str] = field(
default="data", metadata={"help": "Root dir where data is stored."}
)
csv_path: Optional[str] = field(
default="data/metadata.csv", metadata={"help": "Path of metadata file."}
)
test_split: Optional[float] = field(default=0.05, metadata={"help": "Test size."})
train_batch_size: Optional[int] = field(
default=2, metadata={"help": "Batch size for training."}
)
valid_batch_size: Optional[int] = field(
default=2, metadata={"help": "Batch size for evaluation."}
)
weight_decay: Optional[float] = field(
default=0.1, metadata={"help": "Value of weight decay."}
)
with_tracking: Optional[bool] = field(
default=True, metadata={"help": "Whether to use tracking."}
)
learning_rate: Optional[float] = field(
default=5e-5, metadata={"help": "Learning rate fo training."}
)
lr_scheduler_type: Optional[str] = field(
default="cosine", metadata={"help": "Learning rate."}
)
num_warmup_steps: Optional[int] = field(
default=3000,
metadata={"help": "Number of warmup steps in the learning rate schedule."},
)
gradient_accumulation_steps: Optional[int] = field(
default=16, metadata={"help": "Number of gradient accumulation steps."}
)
gradient_checkpointing: Optional[bool] = field(
default=False,
metadata={"help": "Use gradient checkpointing to reduce memory footprint."},
)
num_train_epochs: Optional[int] = field(
default=3, metadata={"help": "Number of training epochs."}
)
max_train_steps: Optional[int] = field(
default=-1, metadata={"help": "Maximum number of training steps."}
)
# max_eval_steps: Optional[int] = field(
# default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."}
# )
max_length: Optional[int] = field(
default=128, metadata={"help": "Sequence lengths used for training."}
)
seed: Optional[int] = field(default=42, metadata={"help": "Training seed."})
checkpointing_steps: Optional[str] = field(
default="epoch", metadata={"help": "Checkpointing steps."}
)
resume_from_checkpoint: Optional[str] = field(
default=None,
metadata={
"help": "States path if the training should continue from a checkpoint folder."
},
)
push_to_hub: Optional[bool] = field(
default=True,
metadata={"help": "Push saved tokenize, processor and model to the hub."},
)
hub_token: Optional[str] = field(default=None, metadata={"help": "Hub token."})
class VocabArguments:
"""
Arguments for generating vocab
"""
lang: Optional[str] = field(default="ckb", metadata={"help": "Language."})
wiki_date: Optional[str] = field(
default="20230201", metadata={"help": "Wiki date."}
)
chars: Optional[str] = field(
default="0123456789abcdefghijklmnopqrstuvwxyz",
metadata={
"help": "Letters and number or anyother characters to be kept for the model to learn to recognize."
},
)