-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_classifier.py
240 lines (203 loc) · 9.45 KB
/
binary_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import time
import os
from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import cv2
from matplotlib.pyplot import figure
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR
from torch.utils.tensorboard import SummaryWriter
from model import MetalModel
from dataset import BinaryDataset
from torch.utils.data import DataLoader
from train import freeze_pretrain
def featurePCA(feature_path, label_path, mode:str, sample_index_path=None):
assert mode in ['all','cluster']
labels = torch.load(label_path)
colors = ['red', 'blue']
features = torch.load(feature_path)
if mode == 'cluster':
idx = torch.load(sample_index_path)
features = features[idx]
legend_label = ['cluster 0', 'cluster 1']
relabels = labels
else:
legend_label = ['11 and 13','others']
# re-labeling
relabels = torch.Tensor([]).long()
for i, label in enumerate(labels):
if (label == 11) or (label == 13):
relabel = torch.tensor([0])
relabels = torch.cat((relabels, relabel))
else:
relabel = torch.tensor([1])
relabels = torch.cat((relabels, relabel))
pca = PCA(n_components=2)
pca_result = pca.fit_transform(features)
pca_one = pca_result[:,0]
pca_two = pca_result[:,1]
plt.figure(figsize=(8,8))
scatter = plt.scatter(pca_one, pca_two, c=relabels, cmap=matplotlib.colors.ListedColormap(colors),
alpha=0.3, edgecolors=None)
plt.legend(handles=scatter.legend_elements()[0], labels=legend_label)
plt.title('Feature map PCA')
plt.xlabel('PCA 1')
plt.ylabel('PCA 2')
plt.show()
def kmeanClassifier(feature_path, label_path, mode:str, model_path=None, sample_factor=0.1):
assert mode in ['train','inference']
if mode == 'train':
# training set
features = torch.load(feature_path)
torch.manual_seed(42)
idx = torch.randint(low=0, high=features.size(0), size=(int(features.size(0)*sample_factor),))
sample_features = features[idx]
# labels = torch.load(label_path)
kmeans = KMeans(n_clusters=2, n_jobs = -1).fit(sample_features)
newlabel = torch.tensor(kmeans.labels_, dtype=torch.long)
torch.save(newlabel, 'binary_label')
print('new label saved')
torch.save(idx, 'sample_index')
print('new label sampled index saved')
# Save to file in the current working directory
kmeans_name = "kmeans.pkl"
with open(kmeans_name, 'wb') as file:
pickle.dump(kmeans, file)
print('model saved')
else:
features = torch.load(feature_path)
labels = torch.load(label_path)
# re-labeling: 11 & 13 -> 0, others -> 1
relabels = torch.Tensor([]).long()
for i, label in enumerate(labels):
if (label == 11) or (label == 13):
relabel = torch.tensor([0])
relabels = torch.cat((relabels, relabel))
else:
relabel = torch.tensor([1])
relabels = torch.cat((relabels, relabel))
# Load model
with open(model_path, 'rb') as file:
kmeans = pickle.load(file)
# Calculate the accuracy score
Xtest = features # tensor
Ypredict = kmeans.predict(Xtest) # numpy
Ypredict = torch.from_numpy(Ypredict)
print(relabels[:20])
print(Ypredict[:20])
correct_count = (Ypredict == relabels).sum().item()
score = 100 * correct_count/(relabels.shape[0])
print("\nInference accuracy: {0:.2f} %\n".format(score))
def CNNClassifier(exp, epochs, model_name='resnet18', batch_size=16, task='1113others',freeze=False, load_model_para=None):
device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu")
model = MetalModel(model_name, 256, output_class=2)
model = model.to(device)
train_dataset = BinaryDataset(mode='train', transform=True,
image_size=256, val_split=0.3,
test_spilt=0.1, seed=42, task=task)
train_dataloader = DataLoader(train_dataset, pin_memory=True,
num_workers=os.cpu_count(),
batch_size=batch_size, shuffle=True)
val_dataset = BinaryDataset(mode='val', transform=True,
image_size=256, val_split=0.3,
test_spilt=0.1, seed=42, task=task)
val_dataloader = DataLoader(val_dataset, pin_memory=True,
num_workers=2*os.cpu_count(),
batch_size=batch_size, shuffle=True)
# optimizer = optim.Adam(model.parameters())
optimizer = optim.SGD(model.parameters(), momentum=0.9, lr=0.001, nesterov=True, weight_decay=0.01)
weighting = torch.tensor(train_dataset.classWeight()).to(device)
criterion = nn.CrossEntropyLoss(weight=weighting)
scheduler = ReduceLROnPlateau(optimizer, mode = 'min', patience=1)
# scheduler = StepLR(optimizer, step_size=4, gamma=0.1)
if freeze:
print('model freeze')
freeze_pretrain(model, True)
else:
print('model unfreeze')
freeze_pretrain(model, False)
if load_model_para:
model.load_state_dict(torch.load(f'/home/rico-li/Job/Metal/model_save/{load_model_para}'))
print('model loaded')
else:
pass
writer = SummaryWriter(f'runs/CNNClassifier1113_trial_{exp}')
for epoch in range(epochs):
start_time = time.time()
train_running_loss = 0.0
print(f'\n---The {epoch+1}-th epoch---\n')
print('[Epoch, Batch] : Loss')
# --------------------------- TRAINING LOOP ---------------------------
print('---Training Loop begins---')
optimizer.zero_grad()
model.train()
for i, data in enumerate(train_dataloader, start=0):
input, target = data[0].to(device), data[1].to(device)
output = model(input)
loss = criterion(output, target)
loss.backward()
train_running_loss += loss.item()
if (i+1)%batch_size == 0:
writer.add_scalar('Batch-Averaged loss', train_running_loss/(batch_size), batch_size*epoch + int((i+1)/(batch_size)))
print( f"[{epoch+1}, {int((i+1)/(batch_size))}]: %.3f" % (train_running_loss/(batch_size)) )
optimizer.step()
optimizer.zero_grad()
train_running_loss = 0.0
lr = [group['lr'] for group in optimizer.param_groups]
print('Epoch:', f'{epoch+1}/{epochs}',' LR:', lr[0])
writer.add_scalar('Learning Rate', lr[0], epoch)
print('---Training Loop ends---')
print(f'---Training spend time: %.1f sec' % (time.time() - start_time))
# --------------------------- VALIDATION LOOP ---------------------------
with torch.no_grad():
model.eval()
val_run_loss = 0.0
print('\n---Validaion Loop begins---')
start_time = time.time()
batch_count = 0
predicts = torch.Tensor().type(torch.long).cuda()
targets = torch.Tensor().type(torch.long).cuda()
for i, data in enumerate(val_dataloader, start=0):
input, target = data[0].to(device), data[1].to(device)
targets = torch.cat((targets, target))
output = model(input)
_, predicted = torch.max(output, 1)
loss = criterion(output, target)
val_run_loss += loss.item()
predicts = torch.cat((predicts, predicted))
batch_count += 1
correct_count = (predicts == targets).sum().item()
accuracy = (100 * correct_count/len(val_dataset))
val_run_loss = val_run_loss/batch_count
scheduler.step(val_run_loss)
# scheduler.step()
writer.add_scalar('Validation accuracy', accuracy, epoch)
writer.add_scalar('Validation loss', val_run_loss, epoch)
print(f"\nLoss of {epoch+1} epoch is %.3f" % (val_run_loss))
print(f"Accuracy is %.2f %% \n" % (accuracy))
print('---Validaion Loop ends---')
print(f'---Validaion spend time: %.1f sec' % (time.time() - start_time))
writer.close()
print('\n-------- Saving Model --------\n')
savepath = f'/home/rico-li/Job/Metal/model_save/CNNClassifier1113_{model_name}_{exp}.pth'
torch.save(model.state_dict(), savepath)
print('-------- Saved --------')
if __name__ == '__main__':
start_time = time.time()
# kmeanClassifier('oneDfea_train_metal_trained_False',
# 'oneDfea_lab_train_metal_trained_False', model_path="kmeans.pkl", mode='inference', sample_factor=0.3)
# # factor > 0.5 will OOM
# print(f'=== kmeans spends : %.2f sec ===' % (time.time() - start_time))
# featurePCA('oneDfea_train_metal_trained_False', 'binary_label',
# mode='cluster', sample_index_path='sample_index')
CNNClassifier(exp=9, epochs=20, model_name='resnet152', batch_size=16, freeze=False, task='1113')
print(f'\n=== CNNClassifier spends : %.2f sec ===\n' % (time.time() - start_time))
pass