-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster.py
245 lines (195 loc) · 8.24 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import time
import os
from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import cv2
from matplotlib.pyplot import figure
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import seaborn as sns
import torch
from model import MetalModel
from dataset import MetalDataset
from torch.utils.data import DataLoader
from kmeans_pytorch import kmeans, kmeans_predict
import pretrainedmodels
def featureExtractor(model_name = 'se_resnet152', hidden_dim=256,
activation='relu', mode='train', batch_size = 64):
assert mode == 'train', 'mode should be train mode'
# TODO: combine activate here
dataset = MetalDataset(mode=mode, transform=True, cluster_img=False, combine=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, pin_memory=True, num_workers=os.cpu_count())
oneDfea = torch.Tensor()
total_lab = torch.Tensor().int()
image_names = []
print('--Using imagenet pretrain--')
model = pretrainedmodels.__dict__[model_name](num_classes=1000, pretrained='imagenet')
model.eval()
print('--model loaded--')
for image, label, image_name in dataloader:
features = model.features(image)
features = features.view(features.size(0),-1)
oneDfea = torch.cat((oneDfea, features), 0)
total_lab = torch.cat((total_lab, label.int()), 0)
image_names += image_name
print(oneDfea.shape)
print(len(image_names))
torch.save(oneDfea, f'oneDfea_combine_True')
torch.save(total_lab, f'oneDfea_lab_combine_True')
f=open(f'oneDfea_name_combine_True.txt','w')
image_names=map(lambda x:x+'\n', image_names)
f.writelines(image_names)
f.close()
print('data saved')
def kmean(fea_path, label_path, name_path,num_clusters, mode, metal_train=False, save=True):
oneDfea = torch.load(fea_path)
feanamefile = open(name_path)
feaName = feanamefile.read()
feaName = feaName.splitlines()
labels = torch.load(label_path)
newlabel = torch.Tensor()
img_name = []
for i in torch.unique(labels):
x = oneDfea[labels == i]
index = [idx for idx, label in enumerate(labels.tolist()) if label == i]
img_name += [feaName[i] for i in index]
if num_clusters[i] != 0:
kmeans = KMeans(n_clusters=num_clusters[i], n_jobs = -1).fit(x)
newlabel = torch.cat((newlabel, i*10 + torch.from_numpy(kmeans.labels_).float()))
inertia = kmeans
else:
newlabel = torch.cat((newlabel, torch.tensor(([i*10]*x.shape[0]), dtype=torch.float)))
print(f'class does not do the kmean: {i}')
print(f'number of samples: {x.shape[0]}')
print(f'\n-- class {i} is done --\n')
if save:
torch.save(newlabel, f'oneDfea_newlab_1113merge')
f = open(f'oneDfea_imgname_1113merge.txt','w')
img_name=map(lambda x:x+'\n', img_name)
f.writelines(img_name)
f.close()
else:
pass
return newlabel
def clusterNumber(fea_path, label_path, list_num_clusters, class_i_list):
oneDfea = torch.load(fea_path)
labels = torch.load(label_path)
for class_i in class_i_list:
x = oneDfea[labels == class_i]
print('\n number of samples in the class: ', x.shape[0])
inertia = []
silhouette_score = []
for num_clusters in list_num_clusters:
kmeans = KMeans(n_clusters=num_clusters, n_jobs = -1).fit(x)
params = kmeans.get_params()
label = kmeans.labels_
if num_clusters == 1:
inertia += [kmeans.inertia_]
else:
silhouette_score += [metrics.silhouette_score(x, label, metric='euclidean')]
inertia += [kmeans.inertia_]
index = silhouette_score.index(max(silhouette_score))
knumber = list_num_clusters[index]
fig, (ax1, ax2) = plt.subplots(1, 2)
# elbow method
ax1.scatter(list_num_clusters,inertia)
ax1.set_title('elbow')
ax1.set(xlabel = 'k number', ylabel = 'wss')
ax1.label_outer()
# silhouette_score
ax2.scatter(list_num_clusters[1:], silhouette_score)
ax2.set_title('silhouette_score')
ax2.set(xlabel = 'k number', ylabel = 'silhouette_score')
ax2.yaxis.set_label_position("right")
ax2.yaxis.tick_right()
plt.savefig(f'k_number_c{class_i}')
print(params)
return knumber
def nakeEyesCheck(newlab_path, name_path, show_id):
newlabel = torch.load(newlab_path)
feanamefile = open(name_path)
feaName = feanamefile.read()
feaName = feaName.splitlines()
newlabel = newlabel.numpy()
feaName = np.array(feaName)
print(newlabel[0:50])
print(len(np.where(newlabel == 0)[0]))
print(len(np.where(newlabel == 1)[0]))
print(len(np.where(newlabel == 2)[0]))
class0Name = feaName[np.where(newlabel == 0)][show_id]
class1Name = feaName[np.where(newlabel == 1)][show_id]
class2Name = feaName[np.where(newlabel == 2)][show_id]
img1 = cv2.imread(f'/home/rico-li/Job/Metal/Image/GB/{class0Name}', cv2.IMREAD_COLOR)
img2 = cv2.imread(f'/home/rico-li/Job/Metal/Image/GB/{class1Name}', cv2.IMREAD_COLOR)
img3 = cv2.imread(f'/home/rico-li/Job/Metal/Image/GB/{class2Name}', cv2.IMREAD_COLOR)
img = np.concatenate((img1, img2, img3), axis=1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
figure(figsize=(20, 10))
plt.imshow(img)
plt.title('subclass examples')
plt.axis('off')
plt.show()
def visual_kmean_pca(fea_path, old_label_path, new_label_path=None,
name_path=None,label_i=None, n_components=2, all=False):
oneDfea = torch.load(fea_path)
labels = torch.load(old_label_path)
feanamefile = open(name_path)
feaNames = feanamefile.read()
feaNames = feaNames.splitlines()
feaNames = np.array(feaNames)
if not all:
newlabels = torch.load(new_label_path)
index = newlabels//10 == label_i
newlabel = newlabels[index]
feaName = feaNames[np.where(index.numpy())]
label = newlabel.numpy()
pcashow = oneDfea[labels == label_i]
colors = ['blue','red','green','purple']
else:
label = labels
pcashow = oneDfea
colors = ['blue']
pca = PCA(n_components=n_components)
pca_result = pca.fit_transform(pcashow)
pca_one = pca_result[:,0]
pca_two = pca_result[:,1]
plt.figure(figsize=(8,8))
plt.scatter(pca_one, pca_two, c=label, cmap=matplotlib.colors.ListedColormap(colors))
if not all:
for i, txt in enumerate(feaName):
if i%15 == 14:
plt.annotate(txt, (pca_one[i]-100, pca_two[i]))
else:
pass
plt.show()
if __name__ == '__main__':
with torch.no_grad():
# --- feature extraction ---
# featureExtractor()
# --- kmean ---
start_time = time.time()
# [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]
# k_num_list = [3,3,2,4,4,4,2,2,3,2, 0, 4, 0, 0, 0]
# TODO: Combining class 11 and 13 to class
# [0,1,2,3,4,5,6,7,8,9,10,11,12,13]
# k_num_list = [3,3,2,4,4,4,2,2,3,2, 0, 4, 0, 0]
# newlabel = kmean('oneDfea_combine_True', 'oneDfea_lab_combine_True', 'oneDfea_name_combine_True.txt',
# k_num_list, mode='train')
# print(newlabel.shape)
# print(f'time: %.2f' % (time.time() - start_time))
# cluster
# start_time = time.time()
# knumber = clusterNumber('oneDfea_train_metal_trained_False', 'oneDfea_lab_train_metal_trained_False', [1,2,3,4,5,6,7],
# class_i_list=[i for i in range(15)])
# print(knumber)
# print(f'time: %.2f' % (time.time() - start_time))
# PCA
visual_kmean_pca('oneDfea_train_metal_trained_False', 'oneDfea_lab_train_metal_trained_False',
'oneDfea_newlab_train_metal_train_False_13changed', 'oneDfea_name_train_metal_trained_False.txt',
n_components=2, label_i=9)
# --- nake eyes verify
# nakeEyesCheck('oneDfea_newlab_train', 'oneDfea_name_train.txt', 0)