-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_lprnet.py
219 lines (184 loc) · 9.67 KB
/
train_lprnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import os
import time
from decimal import Decimal
import numpy as np
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import CosineAnnealingLR, CosineAnnealingWarmRestarts
from ranger import Ranger
from torch.utils.data import DataLoader
# TODO
# from cutmix.cutmix import CutMix
from dataset import *
from Evaluation import decode, eval
from model import *
from utils import *
# CHARS = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
# 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J',
# 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T',
# 'U', 'V', 'W', 'X', 'Y', 'Z'
# ]
CHARS = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'M', 'V', 'H','-'
]
# sparse_tuple_for_ctc(T_length, lengths)
def sparse_tuple_for_ctc(T_length, lengths):
input_lengths = []
target_lengths = []
for ch in lengths:
input_lengths.append(T_length)
target_lengths.append(ch)
return tuple(input_lengths), tuple(target_lengths)
if __name__ == '__main__':
# LPRNet_model_Init_pth = '/home/rico-li/Job/Object_Detection/License_Plate_Detection_Pytorch/LPRNet/weights/LPRNet_model_Init.pth'
parser = argparse.ArgumentParser(description='LPR Training')
parser.add_argument('--img_dir', help='location of images')
parser.add_argument('--df', help='dataframe')
parser.add_argument('--img_size', default=(94, 24), help='the image size')
parser.add_argument('--dropout_rate', default=0.5, help='dropout rate.')
parser.add_argument('--epoch', type=int, default=33, help='number of epoches for training')
parser.add_argument('--pth', help='the trained model weights, the --part must be matched')
parser.add_argument('--batch_size', default=16, help='batch size')
parser.add_argument('--save_dir', help='batch size')
parser.add_argument('--part', help='which part should be trained')
parser.set_defaults(epoch=1024, batch_size=16, img_dir='data/20201229/EXT/resize/new_image', \
df='data.csv', save_dir='weights/lprnet', \
pth='tmp_result/LPRnet_result/reserved_weight/lower_95.18.pth', part='lower')
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# model
lprnet = LPRNet(class_num=len(CHARS), dropout_rate=args.dropout_rate, color=False)
lprnet.to(device)
print("LPRNet loaded")
if args.pth is not None:
lprnet.load_state_dict(torch.load(args.pth, map_location=lambda storage, loc: storage))
print('pre-trained model loaded')
if os.path.basename(args.pth).startswith('lower'):
print('\n ----Load in lower part pre-trained----')
assert args.part == 'lower'
elif os.path.basename(args.pth).startswith('upper'):
print('\n ----Load in upper part pre-trained----')
assert args.part == 'upper'
else:
raise AssertionError('make sure that the pre-trained model has corresponding data, use --part to modified')
df = pd.read_csv(args.df)
train_dataset = LPRDataLoader(img_dir=args.img_dir, imgSize=args.img_size, df=df, mode='train', part=args.part)
val_dataset = LPRDataLoader(img_dir=args.img_dir, imgSize=args.img_size, df=df, mode='validation', part=args.part)
# TODO
# Cutmix
# train_dataset = CutMix(train_dataset, num_class=)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=os.cpu_count(), pin_memory=True, collate_fn=collate_fn)
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True, num_workers=2*os.cpu_count(), pin_memory=True, collate_fn=collate_fn)
print('training dataset loaded with length : {}'.format(len(train_dataset)))
print('validation dataset loaded with length : {}'.format(len(val_dataset)))
# define optimizer & loss
optimizer = torch.optim.Adam(lprnet.parameters())
# optimizer = Ranger(lprnet.parameters(), lr = 0.001)
ctc_loss = nn.CTCLoss(blank=len(CHARS)-1, reduction='mean') # reduction: 'none' | 'mean' | 'sum'
# NOTE:
# scheduler = build_scheduler(optimizer, 'ReduceLROnPlateau')
# steps = 10
# scheduler = CosineAnnealingLR(optimizer, steps)
T_0 = 400
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0)
## save logging and weights
if not os.path.exists('log'):
os.mkdir('log')
# training log file
train_logging_file = 'log/lprnet_train_log.txt'
if os.path.exists(train_logging_file):
os.remove(train_logging_file)
# validation log file
validation_logging_file = 'log/lprnet_val_log.txt'
if os.path.exists(validation_logging_file):
os.remove(validation_logging_file)
start_time = time.time()
total_iters = 0
best_acc = [0.]
T_length = 18 # args.lpr_max_len
print('training kicked off..')
print('-' * 10)
for epoch in range(args.epoch):
# train model
lprnet.train()
since = time.time()
for imgs, labels, lengths in train_dataloader: # img: torch.Size([2, 3, 24, 94]) # labels: torch.Size([14]) # lengths: [7, 7] (list)
imgs, labels = imgs.to(device), labels.to(device)
optimizer.zero_grad()
logits = lprnet(imgs) # torch.Size([batch_size, CHARS length, output length ])
# print(logits.shape)
# torch.Size([16, 14, 18])
log_probs = logits.permute(2, 0, 1) # for ctc loss: length of output x batch x length of chars
# torch.Size([18, 16, 14])
log_probs = log_probs.log_softmax(2).requires_grad_()
input_lengths, target_lengths = sparse_tuple_for_ctc(T_length, lengths) # convert to tuple with length as batch_size
loss = ctc_loss(log_probs, labels, input_lengths=input_lengths, target_lengths=target_lengths)
# Log_probs:
# Tensor of size (T, N, C)
# where T = input length, N = batch size, and C = number of classes (including blank)}
# Targets:
# Tensor of size (N, S) or (sum(target_lengths))
# Input_lengths:
# Tuple or tensor of size (N), where N = batch size.
# Target_lengths
# Tuple or tensor of size (N), where N = batch size.
loss.backward()
optimizer.step()
total_iters += 1
# print train information
if total_iters % 100 == 0:
# current training accuracy
preds = logits.cpu().detach().numpy() # (batch size, 14, 18)
_, pred_labels = decode(preds, CHARS) # list of predict output
total = preds.shape[0]
start = 0
TP = 0
for i, length in enumerate(lengths):
label = labels[start:start+length]
start += length
if np.array_equal(np.array(pred_labels[i]), label.cpu().numpy()):
TP += 1
time_cur = (time.time() - since) / 100
since = time.time()
for p in optimizer.param_groups:
lr = p['lr']
print("Epoch {}/{}, Iters: {:0>6d}, loss: {:.4f}, train_accuracy: {:.2f}%, time: {:.2f} s/iter, learning rate: {:.2E}"
.format(epoch+1, args.epoch, total_iters, loss.item(), TP/total*100, time_cur, Decimal(lr)))
with open(train_logging_file, 'a') as f:
f.write("Epoch {}/{}, Iters: {:0>6d}, loss: {:.4f}, train_accuracy: {:.2f}%, time: {:.2f} s/iter, learning rate: {}"
.format(epoch+1, args.epoch, total_iters, loss.item(), TP/total*100, time_cur, Decimal(lr))+'\n')
f.close()
if total_iters % 400 == 0:
# evaluate accuracy
lprnet.eval()
with torch.no_grad():
ACC = eval(lprnet, val_dataloader, val_dataset, device)
if ACC >= max(best_acc):
# save model
if args.part == 'lower':
torch.save(lprnet.state_dict(), os.path.join(args.save_dir, f'lower_{ACC*100:.2f}.pth'))
elif args.part == 'upper':
torch.save(lprnet.state_dict(), os.path.join(args.save_dir, f'upper_{ACC*100:.2f}.pth'))
print('\n-------- Saveing the best weight --------')
else:
print('\n-------- Accuracy is not improving --------')
best_acc.append(ACC)
# scheduler
# for ReduceLROnPlateau
# scheduler.step(ACC)
# for CosineAnnealingLR
# scheduler.step()
print("Epoch {}/{}, Iters: {:0>6d}, validation_accuracy: {:.2f}%\n".format(epoch+1, args.epoch, total_iters, ACC*100))
with open(validation_logging_file, 'a') as f:
f.write("Epoch {}/{}, Iters: {:0>6d}, validation_accuracy: {:.2f}%".format(epoch+1, args.epoch, total_iters, ACC*100)+'\n')
f.close()
lprnet.train()
# for CosineAnnealingWarmRestarts
scheduler.step(epoch + total_iters / len(train_dataloader))
# for CosineAnnealingLR
# scheduler = CosineAnnealingLR(optimizer, steps)
time_elapsed = time.time() - start_time
print('-'*10)
print('\nFinal Best Accuracy: {:.2f}%'.format(max(best_acc)*100))
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))