-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_rotation.py
151 lines (126 loc) · 5.95 KB
/
train_rotation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import os
import time
from decimal import Decimal
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from ranger import Ranger
from torch.optim.lr_scheduler import (CosineAnnealingLR,
CosineAnnealingWarmRestarts)
from torch.utils.data import DataLoader
from dataset import *
from Evaluation import decode, eval
from model import *
from utils import *
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Rotation Training')
parser.add_argument('--img_dir', help='location of images')
parser.add_argument('--img_size', help='image size')
parser.add_argument('--epoch', type=int, default=33, help='number of epoches for training')
parser.add_argument('--pth', help='the previous trained model weights')
parser.add_argument('--batch_size', default=16, help='batch size')
parser.add_argument('--save_dir', help='location to save .pth')
parser.set_defaults(epoch=50, img_size=128, batch_size=64, img_dir='data/20201229/EXT/resize', \
save_dir='weights/rotation')
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# model
rotation_model = Rotation_model(rgb=False, img_size=args.img_size)
rotation_model.to(device)
print("model loaded")
if args.pth is not None:
rotation_model.load_state_dict(torch.load(args.pth, map_location=lambda storage, loc: storage))
print('pre-trained model loaded')
train_dataset = RotationDataset(path=args.img_dir,mode='train', img_size=args.img_size)
val_dataset = RotationDataset(path=args.img_dir,mode='val', img_size=args.img_size)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=os.cpu_count(), pin_memory=True)
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True, num_workers=2*os.cpu_count(), pin_memory=True)
print('training dataset loaded with length : {}'.format(len(train_dataset)))
print('validation dataset loaded with length : {}'.format(len(val_dataset)))
# define optimizer & loss
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(rotation_model.parameters())
# NOTE:
# scheduler = build_scheduler(optimizer, 'ReduceLROnPlateau')
# steps = 10
# scheduler = CosineAnnealingLR(optimizer, steps)
# T_0 = 400
# scheduler = CosineAnnealingWarmRestarts(optimizer, T_0)
scheduler = ReduceLROnPlateau(optimizer, mode='min')
# save logging and weights
# if not os.path.exists('log'):
# os.mkdir('log')
# # training log file
# train_logging_file = 'log/rotation_model.txt'
# if os.path.exists(train_logging_file):
# os.remove(train_logging_file)
# # validation log file
# validation_logging_file = 'log/rotation_model.txt'
# if os.path.exists(validation_logging_file):
# os.remove(validation_logging_file)
start_time = time.time()
best_acc = [0.]
best_val_loss = [10.]
total_iters = 0
for epoch in range(args.epoch):
# train model
print(f'Epoch {epoch+1}:')
rotation_model.train()
# print('--- Training Loop Begins ---')
for imgs, labels in train_dataloader:
imgs, labels = imgs.to(device), labels.to(device)
optimizer.zero_grad()
total_iters += 1
outputs = rotation_model(imgs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if total_iters % 2 == 0:
_, predicted = torch.max(outputs, 1)
TP = (predicted == labels).sum().item()
total = labels.size(0)
for p in optimizer.param_groups:
lr = p['lr']
print("Epoch {}/{}, train_loss: {:.4f}, train_accuracy: {:.2f}%, learning rate: {:.2E}"
.format(epoch+1, args.epoch, loss.item(), TP/total*100, Decimal(lr)))
with torch.no_grad():
rotation_model.eval()
val_run_loss = 0.0
batch_count = 0
total_count = 0
correct_count = 0
for data in val_dataloader:
imgs, labels = data[0].to(device), data[1].to(device)
outputs = rotation_model(imgs)
_, predicted = torch.max(outputs, 1)
loss = criterion(outputs, labels)
val_run_loss += loss.item()
correct_count += (predicted == labels).sum().item()
batch_count += 1
total_count += labels.size(0)
accuracy = (100 * correct_count/total_count)
val_run_loss = val_run_loss/batch_count
if max(best_acc) >= 80:
scheduler.step(val_run_loss)
if max(best_acc) <= accuracy and min(best_val_loss) > val_run_loss:
torch.save(rotation_model.state_dict(), os.path.join(args.save_dir, f'acc_{accuracy:.2f}_loss_{val_run_loss:.3f}.pth'))
print('\n-------- Saveing the best weight --------')
else:
pass
# print('-------- Accuracy is not improving --------\n')
best_acc.append(accuracy)
best_val_loss.append(val_run_loss)
# for ReduceLROnPlateau
scheduler.step(val_run_loss)
# CosineAnnealingWarmRestarts
# scheduler.step(epoch + total_iters / len(train_dataloader))
for p in optimizer.param_groups:
lr = p['lr']
print("\nEpoch {}/{}, valid_loss: {:.4f}, valid_accuracy: {:.2f}%, learning rate: {:.2E}"
.format(epoch+1, args.epoch, val_run_loss, accuracy, Decimal(lr)))
time_elapsed = time.time() - start_time
print('-'*10)
print('\nFinal Best Accuracy: {:.2f}%'.format(max(best_acc)))
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))