-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
executable file
·671 lines (549 loc) · 26.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
#!/usr/bin/env python3
#
# Copyright 2017 Robert Csordas. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
import functools
import os
import torch.utils.data
import Utils.Debug as debug
from Dataset.Bitmap.AssociativeRecall import AssociativeRecall
from Dataset.Bitmap.BitmapTaskRepeater import BitmapTaskRepeater
from Dataset.Bitmap.KeyValue import KeyValue
from Dataset.Bitmap.CopyTask import CopyData
from Dataset.Bitmap.KeyValue2Way import KeyValue2Way
from Dataset.NLP.bAbi import bAbiDataset
from Models.DNC import DNC, LSTMController, FeedforwardController
from Utils import Visdom
from Utils.ArgumentParser import ArgumentParser
from Utils.Index import index_by_dim
from Utils.Saver import Saver, GlobalVarSaver, StateSaver
from Utils.Collate import MetaCollate
from Utils import gpu_allocator
from Dataset.NLP.NLPTask import NLPTask
from tqdm import tqdm
from Visualize.preview import preview
from Utils.timer import OnceEvery
from Utils import Seed
import time
import sys
import signal
import math
from Utils import Profile
Profile.ENABLED=False
def main():
global i
global loss_sum
global running
parser = ArgumentParser()
parser.add_argument("-bit_w", type=int, default=8, help="Bit vector length for copy task")
parser.add_argument("-block_w", type=int, default=3, help="Block width to associative recall task")
parser.add_argument("-len", type=str, default="4", help="Sequence length for copy task", parser=lambda x: [int(a) for a in x.split("-")])
parser.add_argument("-repeat", type=str, default="1", help="Sequence length for copy task", parser=lambda x: [int(a) for a in x.split("-")])
parser.add_argument("-batch_size", type=int, default=16, help="Sequence length for copy task")
parser.add_argument("-n_subbatch", type=str, default="auto", help="Average this much forward passes to a backward pass")
parser.add_argument("-max_input_count_per_batch", type=int, default=6000, help="Max batch_size*len that can fit into memory")
parser.add_argument("-lr", type=float, default=0.0001, help="Learning rate")
parser.add_argument("-wd", type=float, default=1e-5, help="Weight decay")
parser.add_argument("-optimizer", type=str, default="rmsprop", help="Optimizer algorithm")
parser.add_argument("-name", type=str, help="Save training to this directory")
parser.add_argument("-preview_interval", type=int, default=10, help="Show preview every nth iteration")
parser.add_argument("-info_interval", type=int, default=10, help="Show info every nth iteration")
parser.add_argument("-save_interval", type=int, default=500, help="Save network every nth iteration")
parser.add_argument("-masked_lookup", type=bool, default=1, help="Enable masking in content lookups")
parser.add_argument("-visport", type=int, default=-1, help="Port to run Visdom server on. -1 to disable")
parser.add_argument("-gpu", default="auto", type=str, help="Run on this GPU.")
parser.add_argument("-debug", type=bool, default=1, help="Enable debugging")
parser.add_argument("-task", type=str, default="copy", help="Task to learn")
parser.add_argument("-mem_count", type=int, default=16, help="Number of memory cells")
parser.add_argument("-data_word_size", type=int, default=128, help="Memory word size")
parser.add_argument("-n_read_heads", type=int, default=1, help="Number of read heads")
parser.add_argument("-layer_sizes", type=str, default="256", help="Controller layer sizes. Separate with ,. For example 512,256,256", parser=lambda x: [int(y) for y in x.split(",") if y])
parser.add_argument("-debug_log", type=bool, default=0, help="Enable debug log")
parser.add_argument("-controller_type", type=str, default="lstm", help="Controller type: lstm or linear")
parser.add_argument("-lstm_use_all_outputs", type=bool, default=1, help="Use all LSTM outputs as controller output vs use only the last layer")
parser.add_argument("-momentum", type=float, default=0.9, help="Momentum for optimizer")
parser.add_argument("-embedding_size", type=int, default=256, help="Size of word embedding for NLP tasks")
parser.add_argument("-test_interval", type=int, default=10000, help="Run test in this interval")
parser.add_argument("-dealloc_content", type=bool, default=1, help="Deallocate memory content, unlike DNC, which leaves it unchanged, just decreases the usage counter, causing problems with lookup")
parser.add_argument("-sharpness_control", type=bool, default=1, help="Distribution sharpness control for forward and backward links")
parser.add_argument("-think_steps", type=int, default=0, help="Iddle steps before requiring the answer (for bAbi)")
parser.add_argument("-dump_profile", type=str, save=False)
parser.add_argument("-test_on_start", default="0", save=False)
parser.add_argument("-dump_heatmaps", default=False, save=False)
parser.add_argument("-test_batch_size", default=16)
parser.add_argument("-mask_min", default=0.0)
parser.add_argument("-load", type=str, save=False)
parser.add_argument("-dataset_path", type=str, default="none", parser=ArgumentParser.str_or_none(), help="Specify babi path manually")
parser.add_argument("-babi_train_tasks", type=str, default="none", parser=ArgumentParser.list_or_none(type=str), help="babi task list to use for training")
parser.add_argument("-babi_test_tasks", type=str, default="none", parser=ArgumentParser.list_or_none(type=str), help="babi task list to use for testing")
parser.add_argument("-babi_train_sets", type=str, default="train", parser=ArgumentParser.list_or_none(type=str), help="babi train sets to use")
parser.add_argument("-babi_test_sets", type=str, default="test", parser=ArgumentParser.list_or_none(type=str), help="babi test sets to use")
parser.add_argument("-noargsave", type=bool, default=False, help="Do not save modified arguments", save=False)
parser.add_argument("-demo", type=bool, default=False, help="Do a single step with fixed seed", save=False)
parser.add_argument("-exit_after", type=int, help="Exit after this amount of steps. Useful for debugging.", save=False)
parser.add_argument("-grad_clip", type=float, default=10.0, help="Max gradient norm")
parser.add_argument("-clip_controller", type=float, default=20.0, help="Max gradient norm")
parser.add_argument("-print_test", default=False, save=False)
parser.add_profile([
ArgumentParser.Profile("babi", {
"preview_interval": 10,
"save_interval": 500,
"task": "babi",
"mem_count": 256,
"data_word_size": 64,
"n_read_heads": 4,
"layer_sizes": "256",
"controller_type": "lstm",
"lstm_use_all_outputs": True,
"momentum": 0.9,
"embedding_size": 128,
"test_interval": 5000,
"think_steps": 3,
"batch_size": 2
}, include=["dnc-msd"]),
ArgumentParser.Profile("repeat_copy", {
"bit_w": 8,
"repeat": "1-8",
"len": "2-14",
"task": "copy",
"think_steps": 1,
"preview_interval": 10,
"info_interval": 10,
"save_interval": 100,
"data_word_size": 16,
"layer_sizes": "32",
"n_subbatch": 1,
"controller_type": "lstm",
}),
ArgumentParser.Profile("repeat_copy_simple", {
"repeat": "1-3",
}, include="repeat_copy"),
ArgumentParser.Profile("dnc", {
"masked_lookup": False,
"sharpness_control": False,
"dealloc_content": False
}),
ArgumentParser.Profile("dnc-m", {
"masked_lookup": True,
"sharpness_control": False,
"dealloc_content": False
}),
ArgumentParser.Profile("dnc-s", {
"masked_lookup": False,
"sharpness_control": True,
"dealloc_content": False
}),
ArgumentParser.Profile("dnc-d", {
"masked_lookup": False,
"sharpness_control": False,
"dealloc_content": True
}),
ArgumentParser.Profile("dnc-md", {
"masked_lookup": True,
"sharpness_control": False,
"dealloc_content": True
}),
ArgumentParser.Profile("dnc-ms", {
"masked_lookup": True,
"sharpness_control": True,
"dealloc_content": False
}),
ArgumentParser.Profile("dnc-sd", {
"masked_lookup": False,
"sharpness_control": True,
"dealloc_content": True
}),
ArgumentParser.Profile("dnc-msd", {
"masked_lookup": True,
"sharpness_control": True,
"dealloc_content": True
}),
ArgumentParser.Profile("keyvalue", {
"repeat": "1",
"len": "2-16",
"mem_count": 16,
"task": "keyvalue",
"think_steps": 1,
"preview_interval": 10,
"info_interval": 10,
"data_word_size": 32,
"bit_w": 12,
"save_interval": 1000,
"layer_sizes": "32"
}),
ArgumentParser.Profile("keyvalue2way", {
"task": "keyvalue2way",
}, include="keyvalue"),
ArgumentParser.Profile("associative_recall",{
"task": "recall",
"bit_w": 8,
"len": "2-16",
"mem_count": 64,
"data_word_size": 32,
"n_read_heads": 1,
"layer_sizes": "128",
"controller_type": "lstm",
"lstm_use_all_outputs": 1,
"think_steps": 1,
"mask_min": 0.1,
"info_interval": 10,
"save_interval": 1000,
"preview_interval": 10,
"n_subbatch": 1,
})
])
opt = parser.parse()
assert opt.name is not None, "Training dir (-name parameter) not given"
opt = parser.sync(os.path.join(opt.name, "args.json"), save=not opt.noargsave)
if opt.demo:
Seed.fix()
os.makedirs(os.path.join(opt.name,"save"), exist_ok=True)
os.makedirs(os.path.join(opt.name,"preview"), exist_ok=True)
gpu_allocator.use_gpu(opt.gpu)
debug.enableDebug = opt.debug_log
if opt.visport>0:
Visdom.start(opt.visport)
Visdom.Text("Name").set(opt.name)
class LengthHackSampler:
def __init__(self, batch_size, length):
self.length = length
self.batch_size = batch_size
def __iter__(self):
while True:
len = self.length() if callable(self.length) else self.length
yield [len] * self.batch_size
def __len__(self):
return 0x7FFFFFFF
embedding = None
test_set = None
curriculum = None
loader_reset = False
if opt.task=="copy":
dataset = CopyData(bit_w=opt.bit_w)
in_size = opt.bit_w + 1
out_size = in_size
elif opt.task=="recall":
dataset = AssociativeRecall(bit_w=opt.bit_w, block_w=opt.block_w)
in_size = opt.bit_w + 2
out_size = in_size
elif opt.task=="keyvalue":
assert opt.bit_w % 2==0, "Key-value datasets works only with even bit_w"
dataset = KeyValue(bit_w=opt.bit_w)
in_size = opt.bit_w + 1
out_size = opt.bit_w//2
elif opt.task=="keyvalue2way":
assert opt.bit_w % 2==0, "Key-value datasets works only with even bit_w"
dataset = KeyValue2Way(bit_w=opt.bit_w)
in_size = opt.bit_w + 2
out_size = opt.bit_w//2
elif opt.task=="babi":
dataset = bAbiDataset(think_steps=opt.think_steps, dir_name=opt.dataset_path)
test_set = bAbiDataset(think_steps=opt.think_steps, dir_name=opt.dataset_path, name="test")
dataset.use(opt.babi_train_tasks, opt.babi_train_sets)
in_size = opt.embedding_size
print("bAbi: loaded total of %d sequences." % len(dataset))
test_set.use(opt.babi_test_tasks, opt.babi_test_sets)
out_size = len(dataset.vocabulary)
print("bAbi: using %d sequences for training, %d for testing" % (len(dataset), len(test_set)))
else:
assert False, "Invalid task: %s" % opt.task
if opt.task in ["babi"]:
data_loader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, num_workers=4, pin_memory=True, shuffle=True, collate_fn=MetaCollate())
test_loader = torch.utils.data.DataLoader(test_set, batch_size=opt.test_batch_size, num_workers=opt.test_batch_size, pin_memory=True, shuffle=False, collate_fn=MetaCollate()) if test_set is not None else None
else:
dataset = BitmapTaskRepeater(dataset)
data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=LengthHackSampler(opt.batch_size, BitmapTaskRepeater.key_sampler(opt.len, opt.repeat)), num_workers=1, pin_memory=True)
if opt.controller_type == "lstm":
controller_constructor = functools.partial(LSTMController, out_from_all_layers=opt.lstm_use_all_outputs)
elif opt.controller_type == "linear":
controller_constructor = FeedforwardController
else:
assert False, "Invalid controller: %s" % opt.controller_type
model = DNC(in_size, out_size, opt.data_word_size, opt.mem_count, opt.n_read_heads, controller_constructor(opt.layer_sizes),
batch_first=True, mask=opt.masked_lookup, dealloc_content=opt.dealloc_content,
link_sharpness_control=opt.sharpness_control,
mask_min=opt.mask_min, clip_controller=opt.clip_controller)
params = [
{'params': [p for n, p in model.named_parameters() if not n.endswith(".bias")]},
{'params': [p for n, p in model.named_parameters() if n.endswith(".bias")], 'weight_decay': 0}
]
device = torch.device('cuda') if opt.gpu!="none" else torch.device("cpu")
print("DEVICE: ", device)
if isinstance(dataset, NLPTask):
embedding = torch.nn.Embedding(len(dataset.vocabulary), opt.embedding_size).to(device)
params.append({'params': embedding.parameters(), 'weight_decay': 0})
if opt.optimizer=="sgd":
optimizer = torch.optim.SGD(params, lr=opt.lr, weight_decay=opt.wd, momentum=opt.momentum)
elif opt.optimizer=="adam":
optimizer = torch.optim.Adam(params, lr=opt.lr, weight_decay=opt.wd)
elif opt.optimizer == "rmsprop":
optimizer = torch.optim.RMSprop(params, lr=opt.lr, weight_decay=opt.wd, momentum=opt.momentum, eps=1e-10)
else:
assert "Invalid optimizer: %s" % opt.optimizer
n_params = sum([sum([t.numel() for t in d['params']]) for d in params])
print("Number of parameters: %d" % n_params)
model = model.to(device)
if embedding is not None and hasattr(embedding, "to"):
embedding = embedding.to(device)
i=0
loss_sum = 0
loss_plot = Visdom.Plot2D("loss", store_interval=opt.info_interval, xlabel="iterations", ylabel="loss")
if curriculum is not None:
curriculum_plot = Visdom.Plot2D("curriculum lesson" +
(" (last %d)" % (curriculum.n_lessons-1) if curriculum.n_lessons is not None else ""),
xlabel="iterations", ylabel="lesson")
curriculum_accuracy = Visdom.Plot2D("curriculum accuracy", xlabel="iterations", ylabel="accuracy")
saver = Saver(os.path.join(opt.name, "save"), short_interval=opt.save_interval)
saver.register("model", StateSaver(model))
saver.register("optimizer", StateSaver(optimizer))
saver.register("i", GlobalVarSaver("i"))
saver.register("loss_sum", GlobalVarSaver("loss_sum"))
saver.register("loss_plot", StateSaver(loss_plot))
saver.register("dataset", StateSaver(dataset))
if test_set:
saver.register("test_set", StateSaver(test_set))
if curriculum is not None:
saver.register("curriculum", StateSaver(curriculum))
saver.register("curriculum_plot", StateSaver(curriculum_plot))
saver.register("curriculum_accuracy", StateSaver(curriculum_accuracy))
if isinstance(dataset, NLPTask):
saver.register("word_embeddings", StateSaver(embedding))
elif embedding is not None:
saver.register("embeddings", StateSaver(embedding))
if not saver.load(opt.load):
model.reset_parameters()
if embedding is not None:
embedding.reset_parameters()
visualizers = {}
debug_schemas={
"read_head" : {
"list_dim" : 2
},
"temporal_links/forward_dists" : {
"list_dim" : 2
},
"temporal_links/backward_dists" : {
"list_dim" : 2
}
}
def plot_debug(debug, prefix="", schema={}):
if debug is None:
return
for k, v in debug.items():
curr_name = prefix+k
if curr_name in debug_schemas:
curr_schema = schema.copy()
curr_schema.update(debug_schemas[curr_name])
else:
curr_schema = schema
if isinstance(v, dict):
plot_debug(v, curr_name+"/", curr_schema)
continue
data = v[0]
if curr_schema.get("list_dim",-1) > 0:
if data.ndim != 3:
print("WARNING: unknown data shape for array display: %s, tensor %s" % (data.shape, curr_name))
continue
n_steps = data.shape[curr_schema["list_dim"]-1]
if curr_name not in visualizers:
visualizers[curr_name] = [Visdom.Heatmap(curr_name+"_%d" % i, dumpdir=os.path.join(opt.name, "preview") if opt.dump_heatmaps else None) for i in range(n_steps)]
for i in range(n_steps):
visualizers[curr_name][i].draw(index_by_dim(data, curr_schema["list_dim"]-1, i))
else:
if data.ndim != 2:
print("WARNING: unknown data shape for simple display: %s, tensor %s" % (data.shape, curr_name))
continue
if curr_name not in visualizers:
visualizers[curr_name] = Visdom.Heatmap(curr_name, dumpdir=os.path.join(opt.name, "preview") if opt.dump_heatmaps else None)
visualizers[curr_name].draw(data)
def run_model(input, debug=None):
if isinstance(dataset, NLPTask):
input = embedding(input["input"])
else:
input = input["input"] * 2.0 - 1.0
return model(input, debug=debug)
def multiply_grads(params, mul):
if mul==1:
return
for pa in params:
for p in pa["params"]:
p.grad.data *= mul
def test():
if test_set is None:
return
print("TESTING...")
start_time=time.time()
t = test_set.start_test()
with torch.no_grad():
for data in tqdm(test_loader):
data = {k: v.to(device) if torch.is_tensor(v) else v for k, v in data.items()}
if hasattr(dataset, "prepare"):
data = dataset.prepare(data)
net_out = run_model(data)
test_set.veify_result(t, data, net_out)
test_set.show_test_results(i, t)
print("Test done in %gs" % (time.time() - start_time))
if opt.test_on_start.lower() in ["on", "1", "true", "quit"]:
test()
if opt.test_on_start.lower() == "quit":
saver.write(i)
sys.exit(-1)
if opt.print_test:
model.eval()
total = 0
correct = 0
with torch.no_grad():
for data in tqdm(test_loader):
if not running:
return
data = {k: v.to(device) if torch.is_tensor(v) else v for k, v in data.items()}
if hasattr(test_set, "prepare"):
data = test_set.prepare(data)
net_out = run_model(data)
c,t = test_set.curriculum_measure(net_out, data["output"])
total += t
correct += c
print("Test result: %2.f%% (%d out of %d correct)" % (100.0*correct/total, correct, total))
model.train()
return
iter_start_time = time.time() if i % opt.info_interval == 0 else None
data_load_total_time = 0
start_i = i
if opt.dump_profile:
profiler = torch.autograd.profiler.profile(use_cuda=True)
if opt.dump_heatmaps:
dataset.set_dump_dir(os.path.join(opt.name, "preview"))
@preview()
def do_visualize(raw_data, output, pos_map, debug):
if pos_map is not None:
output = embedding.backmap_output(output, pos_map, raw_data["output"].shape[1])
dataset.visualize_preview(raw_data, output)
if debug is not None:
plot_debug(debug)
preview_timer=OnceEvery(opt.preview_interval)
pos_map = None
start_iter = i
if curriculum is not None:
curriculum.init()
while running:
data_load_timer = time.time()
for data in data_loader:
if not running:
break
if loader_reset:
print("Loader reset requested. Resetting...")
loader_reset = False
if curriculum is not None:
curriculum.lesson_started()
break
if opt.dump_profile:
if i==start_i+1:
print("Starting profiler")
profiler.__enter__()
elif i==start_i+5+1:
print("Stopping profiler")
profiler.__exit__(None, None, None)
print("Average stats")
print(profiler.key_averages().table("cpu_time_total"))
print("Writing trace to file")
profiler.export_chrome_trace(opt.dump_profile)
print("Done.")
sys.exit(0)
else:
print("Step %d out of 5" % (i-start_i))
debug.dbg_print("-------------------------------------")
raw_data = data
data = {k: v.to(device) if torch.is_tensor(v) else v for k,v in data.items()}
if hasattr(dataset, "prepare"):
data = dataset.prepare(data)
data_load_total_time += time.time() - data_load_timer
need_preview = preview_timer()
debug_data = {} if opt.debug and need_preview else None
optimizer.zero_grad()
if opt.n_subbatch=="auto":
n_subbatch = math.ceil(data["input"].numel() / opt.max_input_count_per_batch)
else:
n_subbatch = int(opt.n_subbatch)
real_batch = max(math.floor(opt.batch_size/n_subbatch),1)
n_subbatch = math.ceil(opt.batch_size/real_batch)
remaning_batch = opt.batch_size % real_batch
for subbatch in range(n_subbatch):
if not running:
break
input = data["input"]
target = data["output"]
if n_subbatch!=1:
input = input[subbatch * real_batch: (subbatch + 1) * real_batch]
target = target[subbatch * real_batch:(subbatch + 1) * real_batch]
f2 = data.copy()
f2["input"] = input
output = run_model(f2, debug=debug_data if subbatch==n_subbatch-1 else None)
l = dataset.loss(output, target)
debug.nan_check(l, force=True)
l.backward()
if curriculum is not None:
curriculum.update(*dataset.curriculum_measure(output, target))
if remaning_batch!=0 and subbatch == n_subbatch-2:
multiply_grads(params, real_batch/remaning_batch)
if n_subbatch!=1:
if remaning_batch==0:
multiply_grads(params, 1/n_subbatch)
else:
multiply_grads(params, remaning_batch / opt.batch_size)
for p in params:
torch.nn.utils.clip_grad_norm_(p["params"], opt.grad_clip)
optimizer.step()
i += 1
curr_loss = l.data.item()
loss_plot.add_point(i, curr_loss)
loss_sum += curr_loss
if i % opt.info_interval == 0:
tim = time.time()
loss_avg = loss_sum / opt.info_interval
if curriculum is not None:
curriculum_accuracy.add_point(i, curriculum.get_accuracy())
curriculum_plot.add_point(i, curriculum.step)
message = "Iteration %d, loss: %.4f" % (i, loss_avg)
if iter_start_time is not None:
message += " (%.2f ms/iter, load time %.2g ms/iter, visport: %s)" % (
(tim - iter_start_time) / opt.info_interval * 1000.0,
data_load_total_time / opt.info_interval * 1000.0,
Visdom.port)
print(message)
iter_start_time = tim
loss_sum = 0
data_load_total_time = 0
debug.dbg_print("Iteration %d, loss %g" % (i, curr_loss))
if need_preview:
do_visualize(raw_data, output, pos_map, debug_data)
if i % opt.test_interval==0:
test()
saver.tick(i)
if opt.demo and opt.exit_after is None:
running = False
input("Press enter to quit.")
if opt.exit_after is not None and (i-start_iter)>=opt.exit_after:
running=False
data_load_timer = time.time()
if __name__ == "__main__":
global running
running = True
def signal_handler(signal, frame):
global running
print('You pressed Ctrl+C!')
running = False
signal.signal(signal.SIGINT, signal_handler)
main()