-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmtcnn_demo.py
88 lines (64 loc) · 2.03 KB
/
mtcnn_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# remove tensorflow messages and deprecation from mtcnn packages
import tensorflow as tf
import os
tf.logging.set_verbosity(tf.logging.ERROR)
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
################################################################
# decorator to time functions
def timeit(method):
from time import time
def timed(*args, **kw):
start = time()
result = method(*args, **kw)
end = time()
print(f"({method.__name__}) time: {end - start:.2f}s")
return result
return timed
@timeit
def load_detector():
from mtcnn.mtcnn import MTCNN
return MTCNN()
@timeit
def load_image():
from os import system
url_image = "https://cdn.foxsports.com.br/sites/foxsports-br/files/img/"
url_image += "scaled/630x/notes/materia/"
url_image += "selecao-br-servia-lucasfigcbf-time-950.jpg?"
url_image += "ver=34efb875-0e66-4f7d-afba-62751615638c"
system(f"curl --silent {url_image} -o demo.jpg")
import cv2
return cv2.imread("demo.jpg")
@timeit
def detect_faces(detector, image):
return detector.detect_faces(image)
@timeit
def crop_faces(results, image):
for i, result in enumerate(results):
bb = result["box"]
face = image[bb[1] : bb[1] + bb[3], bb[0] : bb[0] + bb[3]]
print(face.size)
write_image(f"face_{i}.jpg", face)
@timeit
def draw_faces(result_from_detector, image):
import cv2
for result in result_from_detector:
bounding_box = result["box"]
cv2.rectangle(
image,
(bounding_box[0], bounding_box[1]),
(bounding_box[0] + bounding_box[2], bounding_box[1] + bounding_box[3]),
(0, 155, 255),
2,
)
return image
@timeit
def write_image(filename, image):
import cv2
cv2.imwrite(filename, image)
if __name__ == "__main__":
detector = load_detector()
image = load_image()
result = detect_faces(detector, image)
crop_faces(result, image)
image = draw_faces(result, image)
write_image("demo_faces.jpg", image)