-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_base.py
376 lines (315 loc) · 14.2 KB
/
main_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
'''
训练 base 模型
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader, RandomSampler
from torchvision import models
from torchvision.datasets import CIFAR10
from torchvision.utils import make_grid
import torchvision.transforms as transforms
from tensorboardX import SummaryWriter
from models.alexnet_pytorch import caffenet
import os
import click
import time
import numpy as np
from torchvision.transforms import ToPILImage
from torch.autograd import Variable
#from network.cifar10_net import wrn
from network import wideresnet
# import data_loader
from data import data_helper
import argparse
import pandas as pd
HOME = os.environ['HOME']
def get_args():
parser = argparse.ArgumentParser(description="Script to launch jigsaw training",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--source", help="Source", nargs='+')
parser.add_argument("--target", help="Target")
parser.add_argument("--batch_size", "-b", type=int, default=8, help="Batch size")
parser.add_argument("--image_size", type=int, default=224, help="Image size")
parser.add_argument("--seed", type=int, default=1, help="random seed")
parser.add_argument("--min_scale", default=0.8, type=float, help="Minimum scale percent")
parser.add_argument("--max_scale", default=1.0, type=float, help="Maximum scale percent")
parser.add_argument("--random_horiz_flip", default=0.5, type=float, help="Chance of random horizontal flip")
parser.add_argument("--jitter", default=0., type=float, help="Color jitter amount")
parser.add_argument("--tile_random_grayscale", default=0.1, type=float, help="Chance of randomly greyscaling a tile")
parser.add_argument("--limit_source", default=None, type=int,
help="If set, it will limit the number of training samples")
parser.add_argument("--limit_target", default=None, type=int,
help="If set, it will limit the number of testing samples")
parser.add_argument("--learning_rate", "-l", type=float, default=.002, help="Learning rate")
parser.add_argument("--epochs", "-e", type=int, default=300, help="Number of epochs")
parser.add_argument("--network", help="Which network to use", default="resnet18")
parser.add_argument("--tf_logger", type=bool, default=True, help="If true will save tensorboard compatible logs")
parser.add_argument("--val_size", type=float, default="0.1", help="Validation size (between 0 and 1)")
parser.add_argument("--folder_name", default='test', help="Used by the logger to save logs")
parser.add_argument("--bias_whole_image", default=0.9, type=float, help="If set, will bias the training procedure to show more often the whole image")
parser.add_argument("--TTA", type=bool, default=False, help="Activate test time data augmentation")
parser.add_argument("--classify_only_sane", default=False, type=bool, help="If true, the network will only try to classify the non scrambled images")
parser.add_argument("--train_all", default=True, type=bool, help="If true, all network weights will be trained")
parser.add_argument("--suffix", default="", help="Suffix for the logger")
parser.add_argument("--nesterov", default=False, type=bool, help="Use nesterov")
parser.add_argument("--visualization", default=False, type=bool)
parser.add_argument("--epochs_min", type=int, default=1,
help="")
parser.add_argument("--eval", default=False, type=bool)
parser.add_argument("--ckpt", default="logs/model", type=str)
parser.add_argument("--alpha1", default=1, type=float)
parser.add_argument("--alpha2", default=1, type=float)
parser.add_argument("--beta", default=0.1, type=float)
parser.add_argument("--lr_sc", default=0.005, type=float)
parser.add_argument("--task", default='PACS', type=str)
return parser.parse_args()
@click.command()
@click.option('--gpu', type=str, default='0', help='选择gpu')
@click.option('--data', type=str, default='PACS', help='数据集名称')
@click.option('--ntr', type=int, default=None, help='选择训练集前ntr个样本')
@click.option('--translate', type=float, default=None, help='随机平移数据增强')
@click.option('--autoaug', type=str, default=None, help='AA FastAA RA')
@click.option('--epochs', type=int, default=300)
@click.option('--nbatch', type=int, default=None, help='每个epoch中batch的数量')
@click.option('--batchsize', type=int, default=128, help='每个batch中样本的数量')
@click.option('--lr', type=float, default=0.1)
@click.option('--lr_scheduler', type=str, default='none', help='是否选择学习率衰减策略')
@click.option('--svroot', type=str, default='./saved', help='项目文件保存路径')
def experiment(gpu, data, ntr, translate, autoaug, epochs, nbatch, batchsize, lr, lr_scheduler, svroot):
settings = locals().copy()
print(settings)
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
if not os.path.exists(svroot):
os.makedirs(svroot)
writer = SummaryWriter(svroot)
if data in ['mnist', 'mnist_t']:
if data == 'mnist':
trset = data_loader.load_mnist('train', translate=translate, ntr=ntr, autoaug=autoaug)
elif data == 'mnist_t':
trset = data_loader.load_mnist_t('train', translate=translate, ntr=ntr)
teset = data_loader.load_mnist('test')
trloader = DataLoader(trset, batch_size=batchsize, num_workers=8, \
sampler=RandomSampler(trset, True, nbatch*batchsize))
teloader = DataLoader(teset, batch_size=batchsize, num_workers=8, shuffle=False)
cls_net = mnist_net.ConvNet().cuda()
cls_opt = optim.Adam(cls_net.parameters(), lr=lr)
elif data == 'mnistvis':
trset = data_loader.load_mnist('train')
teset = data_loader.load_mnist('test')
trloader = DataLoader(trset, batch_size=batchsize, num_workers=8, \
sampler=RandomSampler(trset, True, nbatch*batchsize))
teloader = DataLoader(teset, batch_size=batchsize, num_workers=8, shuffle=False)
cls_net= mnist_net.ConvNetVis().cuda()
cls_opt = optim.Adam(cls_net.parameters(), lr=lr)
elif data == 'cifar10':
trset = data_loader.load_cifar10(split='train')
teset = data_loader.load_cifar10(split='test')
trloader = DataLoader(trset, batch_size=batchsize, num_workers=8, shuffle=True, drop_last=True)
teloader = DataLoader(teset, batch_size=batchsize, num_workers=8, shuffle=False)
cls_net = wrn(depth=16, num_classes=10, widen_factor=4, dropRate=0.4, nc =3).cuda()
cls_opt = optim.SGD(cls_net.parameters(), lr=smooth_step(10,40,100,150,0), momentum=0.9, weight_decay=1e-5)
if lr_scheduler == 'cosine':
scheduler = optim.lr_scheduler.CosineAnnealingLR(cls_opt, epochs)
elif data == 'PACS':
args = get_args()
args.n_classes = 7
args.source = ['photo']
args.target = ['art_painting', 'cartoon', 'sketch']
trloader, teloader = data_helper.get_train_dataloader(args, patches=False)
cls_net = caffenet(7).cuda()
cls_opt = torch.optim.SGD(cls_net.parameters(), lr=0.002, nesterov=True, momentum=0.9, weight_decay=0.0005)
scheduler = torch.optim.lr_scheduler.StepLR(cls_opt, step_size=int(epochs * 0.8))
elif 'synthia' in data:
branch = data.split('_')[1]
trset = data_loader.load_synthia(branch)
trloader = DataLoader(trset, batch_size=batchsize, num_workers=8, shuffle=True)
teloader = DataLoader(trset, batch_size=batchsize, num_workers=8, shuffle=True)
imsize = [192, 320]
nclass = 14
cls_net = fcn.FCN_resnet50(nclass=nclass).cuda()
cls_opt = optim.Adam(cls_net.parameters(), lr=lr)
if lr_scheduler == 'cosine':
scheduler = optim.lr_scheduler.CosineAnnealingLR(cls_opt, epochs*len(trloader))
cls_criterion = nn.CrossEntropyLoss()
# 开始训练
best_acc = 0
for epoch in range(epochs):
t1 = time.time()
loss_list = []
cls_net.train()
for i, ((x, _, y), _, idx) in enumerate(trloader):
x = x.type(torch.FloatTensor)
x, y = x.cuda(), y.cuda()
p = cls_net(x)
cls_loss = cls_criterion(p, y)
#torch.cuda.synchronize()
cls_opt.zero_grad()
cls_loss.backward()
cls_opt.step()
loss_list.append([cls_loss.item()])
scheduler.step()
cls_loss, = np.mean(loss_list, 0)
cls_net.eval()
if data in ['mnist', 'mnist_t', 'cifar10', 'mnistvis']:
teacc = evaluate_cifar10(cls_net, teloader)
elif 'synthia' in data:
teacc = evaluate_seg(cls_net, teloader, nclass)
if data == 'PACS':
teacc = evaluate_P(cls_net, teloader)
if best_acc < teacc:
best_acc = teacc
torch.save({'cls_net':cls_net.state_dict()}, os.path.join(svroot, 'best.pkl'))
# 保存日志
t2 = time.time()
print(f'epoch {epoch}, time {t2-t1:.2f}, cls_loss {cls_loss:.4f} teacc {teacc:2.2f}')
writer.add_scalar('scalar/cls_loss', cls_loss, epoch)
writer.add_scalar('scalar/teacc', teacc, epoch)
writer.close()
def evaluate(net, teloader):
correct, count = 0, 0
ps = []
ys = []
for i,(x1, y1) in enumerate(teloader):
with torch.no_grad():
x1 = x1.cuda()
p1 = net(x1)
p1 = p1.argmax(dim=1)
ps.append(p1.detach().cpu().numpy())
ys.append(y1.numpy())
ps = np.concatenate(ps)
ys = np.concatenate(ys)
acc = np.mean(ys==ps)*100
return acc
def evaluate_cifar10(model, test_loader, device='cuda'):
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
acc = 100 * correct / total
# print('Accuracy of the model on the test images: {} %'.format(acc))
return acc
def evaluate_P(model, test_loader, device='cuda'):
model.eval()
class_correct = 0
total = 0
for it, ((data, nouse, class_l), _, _) in enumerate(test_loader):
data, nouse, class_l = data.to(device), nouse.to(device), class_l.to(device)
z = model(data)
_, cls_pred = z.max(dim=1)
total += data.size(0)
class_correct += torch.sum(cls_pred == class_l.data)
acc = 100 * class_correct / total
return acc
def evaluate_ACS(gpu, modelpath,data_loader,svpath='acs.test', device='cuda'):
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
cls_net = caffenet(7).cuda()
saved_weight = torch.load(modelpath, map_location='cuda')
cls_net.load_state_dict(saved_weight['state'])
cls_net.eval()
columns = ['A', 'C', 'S']
total = len(data_loader)
avg_acc=0
rst = []
for loader in data_loader:
teacc = evaluate_P(cls_net, loader)
avg_acc += teacc
rst.append(teacc.item())
df = pd.DataFrame([rst], columns=columns)
print(df)
if svpath is not None:
df.to_csv(svpath)
acc = 100 * avg_acc / total
print(acc.item())
def evaluate_ACS(gpu, modelpath, data_loader, svpath='acs.test', device='cuda'):
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
cls_net = caffenet(7).cuda()
saved_weight = torch.load(modelpath, map_location='cuda')
cls_net.load_state_dict(saved_weight['state'])
cls_net.eval()
columns = ['A', 'C', 'S']
total = len(data_loader)
avg_acc = 0
rst = []
for loader in data_loader:
teacc = evaluate_P(cls_net, loader)
avg_acc += teacc
rst.append(teacc.item())
df = pd.DataFrame([rst], columns=columns)
print(df)
if svpath is not None:
df.to_csv(svpath)
acc = avg_acc / total
print(acc.item())
def evaluate_ACS0(gpu, modelpath,data_loader,svpath='acs.test', device='cuda'):
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
cls_net = caffenet(7).cuda()
state_dict = torch.load(modelpath, map_location='cuda')
state_dict["cls_head.weight"] = state_dict["classifier.6.weight"]
state_dict["cls_head.bias"] = state_dict["classifier.6.bias"]
del state_dict["classifier.6.weight"]
del state_dict["classifier.6.bias"]
# for key in state_dict:
# print(key)
cls_net.load_state_dict(state_dict, strict=False)
cls_net.eval()
columns = ['A', 'C', 'S']
total = len(data_loader)
avg_acc=0
rst = []
for loader in data_loader:
teacc = evaluate_P(cls_net, loader)
avg_acc += teacc
rst.append(teacc.item())
df = pd.DataFrame([rst], columns=columns)
print(df)
if svpath is not None:
df.to_csv(svpath)
acc = avg_acc / total
print(acc.item())
def mkdir(path):
folder = os.path.exists(path)
if not folder:
os.makedirs(path)
print("--- new folder... ---")
print("--- OK ---")
else:
print("--- There is this folder! ---")
def saveModel(model,epoch,test_acc,train_loss,path):
torch.save(model, path+'/model.pkl')
# torch.save(model.state_dict(), 'resnet.ckpt')
epoch_save=np.array(epoch)
np.save(path+'/learning_rate.npy',epoch_save)
test_acc=np.array(test_acc)
np.save(path+'/test_acc.npy',test_acc)
train_loss=np.array(train_loss)
np.save(path+'/train_loss.npy',train_loss)
def smooth_step(a, b, c, d, x):
level_s = 0.01
level_m = 0.1
level_n = 0.01
level_r = 0.005
if x <= a:
return level_s
if a < x <= b:
return (((x - a) / (b - a)) * (level_m - level_s) + level_s)
if b < x <= c:
return level_m
if c < x <= d:
return level_n
if d < x:
return level_r
def update_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__=='__main__':
# experiment()
evaluate_ACS("0", "./saved/pytorch2/0-best.pkl", './saved/pytorch2/0-best.pkl.test')