-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathoptions.py
612 lines (549 loc) · 31.9 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import sys
from typing import Callable, List, Optional
import torch
from fairseq import utils
from fairseq.data.indexed_dataset import get_available_dataset_impl
def get_preprocessing_parser(default_task="translation"):
parser = get_parser("Preprocessing", default_task)
add_preprocess_args(parser)
return parser
def get_training_parser(default_task="translation"):
parser = get_parser("Trainer", default_task)
add_dataset_args(parser, train=True)
add_distributed_training_args(parser)
add_model_args(parser)
add_optimization_args(parser)
add_checkpoint_args(parser)
return parser
def get_generation_parser(interactive=False, default_task="translation"):
parser = get_parser("Generation", default_task)
add_dataset_args(parser, gen=True)
add_generation_args(parser)
if interactive:
add_interactive_args(parser)
return parser
def get_interactive_generation_parser(default_task="translation"):
return get_generation_parser(interactive=True, default_task=default_task)
def get_eval_lm_parser(default_task="language_modeling"):
parser = get_parser("Evaluate Language Model", default_task)
add_dataset_args(parser, gen=True)
add_eval_lm_args(parser)
return parser
def get_validation_parser(default_task=None):
parser = get_parser("Validation", default_task)
add_dataset_args(parser, train=True)
group = parser.add_argument_group("Evaluation")
add_common_eval_args(group)
return parser
def eval_str_list(x, type=float):
if x is None:
return None
if isinstance(x, str):
x = eval(x)
try:
return list(map(type, x))
except TypeError:
return [type(x)]
def eval_bool(x, default=False):
if x is None:
return default
try:
return bool(eval(x))
except TypeError:
return default
def parse_args_and_arch(
parser: argparse.ArgumentParser,
input_args: List[str] = None,
parse_known: bool = False,
suppress_defaults: bool = False,
modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None,
):
"""
Args:
parser (ArgumentParser): the parser
input_args (List[str]): strings to parse, defaults to sys.argv
parse_known (bool): only parse known arguments, similar to
`ArgumentParser.parse_known_args`
suppress_defaults (bool): parse while ignoring all default values
modify_parser (Optional[Callable[[ArgumentParser], None]]):
function to modify the parser, e.g., to set default values
"""
if suppress_defaults:
# Parse args without any default values. This requires us to parse
# twice, once to identify all the necessary task/model args, and a second
# time with all defaults set to None.
args = parse_args_and_arch(
parser,
input_args=input_args,
parse_known=parse_known,
suppress_defaults=False,
)
suppressed_parser = argparse.ArgumentParser(add_help=False, parents=[parser])
suppressed_parser.set_defaults(**{k: None for k, v in vars(args).items()})
args = suppressed_parser.parse_args(input_args)
return argparse.Namespace(
**{k: v for k, v in vars(args).items() if v is not None}
)
from fairseq.models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY
# Before creating the true parser, we need to import optional user module
# in order to eagerly import custom tasks, optimizers, architectures, etc.
usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
usr_parser.add_argument("--user-dir", default=None)
usr_args, _ = usr_parser.parse_known_args(input_args)
utils.import_user_module(usr_args)
if modify_parser is not None:
modify_parser(parser)
# The parser doesn't know about model/criterion/optimizer-specific args, so
# we parse twice. First we parse the model/criterion/optimizer, then we
# parse a second time after adding the *-specific arguments.
# If input_args is given, we will parse those args instead of sys.argv.
args, _ = parser.parse_known_args(input_args)
# Add model-specific args to parser.
if hasattr(args, "arch"):
model_specific_group = parser.add_argument_group(
"Model-specific configuration",
# Only include attributes which are explicitly given as command-line
# arguments or which have default values.
argument_default=argparse.SUPPRESS,
)
ARCH_MODEL_REGISTRY[args.arch].add_args(model_specific_group)
# Add *-specific args to parser.
from fairseq.registry import REGISTRIES
for registry_name, REGISTRY in REGISTRIES.items():
choice = getattr(args, registry_name, None)
if choice is not None:
cls = REGISTRY["registry"][choice]
if hasattr(cls, "add_args"):
cls.add_args(parser)
if hasattr(args, "task"):
from fairseq.tasks import TASK_REGISTRY
TASK_REGISTRY[args.task].add_args(parser)
if getattr(args, "use_bmuf", False):
# hack to support extra args for block distributed data parallelism
from fairseq.optim.bmuf import FairseqBMUF
FairseqBMUF.add_args(parser)
# Modify the parser a second time, since defaults may have been reset
if modify_parser is not None:
modify_parser(parser)
# Parse a second time.
if parse_known:
args, extra = parser.parse_known_args(input_args)
else:
args = parser.parse_args(input_args)
extra = None
# Post-process args.
if hasattr(args, "max_sentences_valid") and args.max_sentences_valid is None:
args.max_sentences_valid = args.max_sentences
if hasattr(args, "max_tokens_valid") and args.max_tokens_valid is None:
args.max_tokens_valid = args.max_tokens
if getattr(args, "memory_efficient_fp16", False):
args.fp16 = True
# Apply architecture configuration.
if hasattr(args, "arch"):
ARCH_CONFIG_REGISTRY[args.arch](args)
if parse_known:
return args, extra
else:
return args
def get_parser(desc, default_task="translation"):
# Before creating the true parser, we need to import optional user module
# in order to eagerly import custom tasks, optimizers, architectures, etc.
usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
usr_parser.add_argument("--user-dir", default=None)
usr_args, _ = usr_parser.parse_known_args()
utils.import_user_module(usr_args)
parser = argparse.ArgumentParser(allow_abbrev=False)
# fmt: off
parser.add_argument('--no-progress-bar', action='store_true', help='disable progress bar')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='log progress every N batches (when progress bar is disabled)')
parser.add_argument('--log-format', default=None, help='log format to use',
choices=['json', 'none', 'simple', 'tqdm'])
parser.add_argument('--tensorboard-logdir', metavar='DIR', default='',
help='path to save logs for tensorboard, should match --logdir '
'of running tensorboard (default: no tensorboard logging)')
parser.add_argument('--seed', default=1, type=int, metavar='N',
help='pseudo random number generator seed')
parser.add_argument('--cpu', action='store_true', help='use CPU instead of CUDA')
parser.add_argument('--fp16', action='store_true', help='use FP16')
parser.add_argument('--memory-efficient-fp16', action='store_true',
help='use a memory-efficient version of FP16 training; implies --fp16')
parser.add_argument('--fp16-no-flatten-grads', action='store_true',
help='don\'t flatten FP16 grads tensor')
parser.add_argument('--fp16-init-scale', default=2 ** 7, type=int,
help='default FP16 loss scale')
parser.add_argument('--fp16-scale-window', type=int,
help='number of updates before increasing loss scale')
parser.add_argument('--fp16-scale-tolerance', default=0.0, type=float,
help='pct of updates that can overflow before decreasing the loss scale')
parser.add_argument('--min-loss-scale', default=1e-4, type=float, metavar='D',
help='minimum FP16 loss scale, after which training is stopped')
parser.add_argument('--threshold-loss-scale', type=float,
help='threshold FP16 loss scale from below')
parser.add_argument('--user-dir', default=None,
help='path to a python module containing custom extensions (tasks and/or architectures)')
parser.add_argument('--empty-cache-freq', default=0, type=int,
help='how often to clear the PyTorch CUDA cache (0 to disable)')
parser.add_argument('--all-gather-list-size', default=16384, type=int,
help='number of bytes reserved for gathering stats from workers')
from fairseq.registry import REGISTRIES
for registry_name, REGISTRY in REGISTRIES.items():
parser.add_argument(
'--' + registry_name.replace('_', '-'),
default=REGISTRY['default'],
choices=REGISTRY['registry'].keys(),
)
# Task definitions can be found under fairseq/tasks/
from fairseq.tasks import TASK_REGISTRY
parser.add_argument('--task', metavar='TASK', default=default_task,
choices=TASK_REGISTRY.keys(),
help='task')
# fmt: on
return parser
def add_preprocess_args(parser):
group = parser.add_argument_group("Preprocessing")
# fmt: off
group.add_argument("-s", "--source-lang", default=None, metavar="SRC",
help="source language")
group.add_argument("-t", "--target-lang", default=None, metavar="TARGET",
help="target language")
group.add_argument("--trainpref", metavar="FP", default=None,
help="train file prefix")
group.add_argument("--validpref", metavar="FP", default=None,
help="comma separated, valid file prefixes")
group.add_argument("--testpref", metavar="FP", default=None,
help="comma separated, test file prefixes")
group.add_argument("--align-suffix", metavar="FP", default=None,
help="alignment file suffix")
group.add_argument("--destdir", metavar="DIR", default="data-bin",
help="destination dir")
group.add_argument("--thresholdtgt", metavar="N", default=0, type=int,
help="map words appearing less than threshold times to unknown")
group.add_argument("--thresholdsrc", metavar="N", default=0, type=int,
help="map words appearing less than threshold times to unknown")
group.add_argument("--tgtdict", metavar="FP",
help="reuse given target dictionary")
group.add_argument("--srcdict", metavar="FP",
help="reuse given source dictionary")
group.add_argument("--nwordstgt", metavar="N", default=-1, type=int,
help="number of target words to retain")
group.add_argument("--nwordssrc", metavar="N", default=-1, type=int,
help="number of source words to retain")
group.add_argument("--alignfile", metavar="ALIGN", default=None,
help="an alignment file (optional)")
parser.add_argument('--dataset-impl', metavar='FORMAT', default='mmap',
choices=get_available_dataset_impl(),
help='output dataset implementation')
group.add_argument("--joined-dictionary", action="store_true",
help="Generate joined dictionary")
group.add_argument("--only-source", action="store_true",
help="Only process the source language")
group.add_argument("--padding-factor", metavar="N", default=8, type=int,
help="Pad dictionary size to be multiple of N")
group.add_argument("--workers", metavar="N", default=1, type=int,
help="number of parallel workers")
# fmt: on
return parser
def add_dataset_args(parser, train=False, gen=False):
group = parser.add_argument_group("Dataset and data loading")
# fmt: off
group.add_argument('--num-workers', default=1, type=int, metavar='N',
help='how many subprocesses to use for data loading')
group.add_argument('--skip-invalid-size-inputs-valid-test', action='store_true',
help='ignore too long or too short lines in valid and test set')
group.add_argument('--max-tokens', type=int, metavar='N',
help='maximum number of tokens in a batch')
group.add_argument('--max-sentences', '--batch-size', type=int, metavar='N',
help='maximum number of sentences in a batch')
group.add_argument('--required-batch-size-multiple', default=8, type=int, metavar='N',
help='batch size will be a multiplier of this value')
parser.add_argument('--dataset-impl', metavar='FORMAT',
choices=get_available_dataset_impl(),
help='output dataset implementation')
if train:
group.add_argument('--train-subset', default='train', metavar='SPLIT',
help='data subset to use for training (e.g. train, valid, test)')
group.add_argument('--valid-subset', default='valid', metavar='SPLIT',
help='comma separated list of data subsets to use for validation'
' (e.g. train, valid, test)')
group.add_argument('--validate-interval', type=int, default=1, metavar='N',
help='validate every N epochs')
group.add_argument('--fixed-validation-seed', default=None, type=int, metavar='N',
help='specified random seed for validation')
group.add_argument('--disable-validation', action='store_true',
help='disable validation')
group.add_argument('--max-tokens-valid', type=int, metavar='N',
help='maximum number of tokens in a validation batch'
' (defaults to --max-tokens)')
group.add_argument('--max-sentences-valid', type=int, metavar='N',
help='maximum number of sentences in a validation batch'
' (defaults to --max-sentences)')
group.add_argument('--curriculum', default=0, type=int, metavar='N',
help='don\'t shuffle batches for first N epochs')
if gen:
group.add_argument('--gen-subset', default='test', metavar='SPLIT',
help='data subset to generate (train, valid, test)')
group.add_argument('--num-shards', default=1, type=int, metavar='N',
help='shard generation over N shards')
group.add_argument('--shard-id', default=0, type=int, metavar='ID',
help='id of the shard to generate (id < num_shards)')
# fmt: on
return group
def add_distributed_training_args(parser):
group = parser.add_argument_group("Distributed training")
# fmt: off
group.add_argument('--distributed-world-size', type=int, metavar='N',
default=max(1, torch.cuda.device_count()),
help='total number of GPUs across all nodes (default: all visible GPUs)')
group.add_argument('--distributed-rank', default=0, type=int,
help='rank of the current worker')
group.add_argument('--distributed-backend', default='nccl', type=str,
help='distributed backend')
group.add_argument('--distributed-init-method', default=None, type=str,
help='typically tcp://hostname:port that will be used to '
'establish initial connetion')
group.add_argument('--distributed-port', default=-1, type=int,
help='port number (not required if using --distributed-init-method)')
group.add_argument('--device-id', '--local_rank', default=0, type=int,
help='which GPU to use (usually configured automatically)')
group.add_argument('--distributed-no-spawn', action='store_true',
help='do not spawn multiple processes even if multiple GPUs are visible')
# "c10d" is PyTorch's DDP implementation and provides the fastest
# training. "no_c10d" is a more robust, but slightly slower DDP
# implementation. Try this if you get warning messages about
# inconsistent gradients between workers, or if some of your model
# parameters are not always used.
group.add_argument('--ddp-backend', default='c10d', type=str,
choices=['c10d', 'no_c10d'],
help='DistributedDataParallel backend')
group.add_argument('--bucket-cap-mb', default=25, type=int, metavar='MB',
help='bucket size for reduction')
group.add_argument('--fix-batches-to-gpus', action='store_true',
help='don\'t shuffle batches between GPUs; this reduces overall '
'randomness and may affect precision but avoids the cost of '
're-reading the data')
group.add_argument('--find-unused-parameters', default=False, action='store_true',
help='disable unused parameter detection (not applicable to '
'no_c10d ddp-backend')
group.add_argument('--fast-stat-sync', default=False, action='store_true',
help='[deprecated] this is now defined per Criterion')
group.add_argument('--broadcast-buffers', default=False, action='store_true',
help='Copy non-trainable parameters between GPUs, such as '
'batchnorm population statistics')
# fmt: on
return group
def add_optimization_args(parser):
group = parser.add_argument_group("Optimization")
# fmt: off
group.add_argument('--disc-epochs', default=0, type=int,
help='disc epochs')
group.add_argument('--label-smoothing', default=0., type=float, metavar='D',
help='epsilon for label smoothing, 0 means no label smoothing')
group.add_argument('--disc-weight', default=1., type=float,
help='weight for classification loss')
group.add_argument('--recon-weight', default=1., type=float,
help='weight for self-reconstruction loss')
group.add_argument('--cycle-weight', default=1., type=float,
help='weight for cycled reconstruction loss')
group.add_argument('--weight-forward', default=0.5, type=float,
help='weight for forward pass')
group.add_argument('--trans-only-epoch', default=2, type=int, metavar='N',
help='epochs for which cyclic and reconstruction losses will be ignored')
group.add_argument('--max-epoch', default=10, type=int, metavar='N',
help='force stop training at specified epoch')
group.add_argument('--max-update', '--mu', default=0, type=int, metavar='N',
help='force stop training at specified update')
group.add_argument('--clip-norm', default=25, type=float, metavar='NORM',
help='clip threshold of gradients')
group.add_argument('--sentence-avg', action='store_true',
help='normalize gradients by the number of sentences in a batch'
' (default is to normalize by number of tokens)')
group.add_argument('--update-freq', default='1', metavar='N1,N2,...,N_K',
type=lambda uf: eval_str_list(uf, type=int),
help='update parameters every N_i batches, when in epoch i')
group.add_argument('--lr', '--learning-rate', default='0.25', type=eval_str_list,
metavar='LR_1,LR_2,...,LR_N',
help='learning rate for the first N epochs; all epochs >N using LR_N'
' (note: this may be interpreted differently depending on --lr-scheduler)')
group.add_argument('--min-lr', default=-1, type=float, metavar='LR',
help='stop training when the learning rate reaches this minimum')
group.add_argument('--use-bmuf', default=False, action='store_true',
help='specify global optimizer for syncing models on different GPUs/shards')
# fmt: on
return group
def add_checkpoint_args(parser):
group = parser.add_argument_group("Checkpointing")
# fmt: off
group.add_argument('--save-dir', metavar='DIR', default='checkpoints',
help='path to save checkpoints')
group.add_argument('--restore-file', default='checkpoint_last.pt',
help='filename from which to load checkpoint '
'(default: <save-dir>/checkpoint_last.pt')
group.add_argument('--reset-dataloader', action='store_true',
help='if set, does not reload dataloader state from the checkpoint')
group.add_argument('--reset-lr-scheduler', action='store_true',
help='if set, does not load lr scheduler state from the checkpoint')
group.add_argument('--reset-meters', action='store_true',
help='if set, does not load meters from the checkpoint')
group.add_argument('--reset-optimizer', action='store_true',
help='if set, does not load optimizer state from the checkpoint')
group.add_argument('--optimizer-overrides', default="{}", type=str, metavar='DICT',
help='a dictionary used to override optimizer args when loading a checkpoint')
group.add_argument('--save-interval', type=int, default=1, metavar='N',
help='save a checkpoint every N epochs')
group.add_argument('--save-interval-updates', type=int, default=0, metavar='N',
help='save a checkpoint (and validate) every N updates')
group.add_argument('--keep-interval-updates', type=int, default=-1, metavar='N',
help='keep the last N checkpoints saved with --save-interval-updates')
group.add_argument('--keep-last-epochs', type=int, default=-1, metavar='N',
help='keep last N epoch checkpoints')
group.add_argument('--keep-best-checkpoints', type=int, default=-1, metavar='N',
help='keep best N checkpoints based on scores')
group.add_argument('--no-save', action='store_true',
help='don\'t save models or checkpoints')
group.add_argument('--no-epoch-checkpoints', action='store_true',
help='only store last and best checkpoints')
group.add_argument('--no-last-checkpoints', action='store_true',
help='don\'t store last checkpoints')
group.add_argument('--no-save-optimizer-state', action='store_true',
help='don\'t save optimizer-state as part of checkpoint')
group.add_argument('--best-checkpoint-metric', type=str, default='loss',
help='metric to use for saving "best" checkpoints')
group.add_argument('--maximize-best-checkpoint-metric', action='store_true',
help='select the largest metric value for saving "best" checkpoints')
group.add_argument('--patience', type=int, default=-1, metavar='N',
help=('early stop training if valid performance doesn\'t '
'improve for N consecutive validation runs; note '
'that this is influenced by --validate-interval'))
# fmt: on
return group
def add_common_eval_args(group):
# fmt: off
group.add_argument('--path', metavar='FILE',
help='path(s) to model file(s), colon separated')
group.add_argument('--remove-bpe', nargs='?', const='@@ ', default=None,
help='remove BPE tokens before scoring (can be set to sentencepiece)')
group.add_argument('--quiet', action='store_true',
help='only print final scores')
group.add_argument('--model-overrides', default="{}", type=str, metavar='DICT',
help='a dictionary used to override model args at generation '
'that were used during model training')
group.add_argument('--results-path', metavar='RESDIR', type=str, default=None,
help='path to save eval results (optional)"')
# fmt: on
def add_eval_lm_args(parser):
group = parser.add_argument_group("LM Evaluation")
add_common_eval_args(group)
# fmt: off
group.add_argument('--output-word-probs', action='store_true',
help='if set, outputs words and their predicted log probabilities to standard output')
group.add_argument('--output-word-stats', action='store_true',
help='if set, outputs word statistics such as word count, average probability, etc')
group.add_argument('--context-window', default=0, type=int, metavar='N',
help='ensures that every evaluated token has access to a context of at least this size,'
' if possible')
group.add_argument('--softmax-batch', default=sys.maxsize, type=int, metavar='N',
help='if BxT is more than this, will batch the softmax over vocab to this amount of tokens'
' in order to fit into GPU memory')
# fmt: on
def add_generation_args(parser):
group = parser.add_argument_group("Generation")
add_common_eval_args(group)
# fmt: off
group.add_argument('--beam', default=5, type=int, metavar='N',
help='beam size')
group.add_argument('--nbest', default=1, type=int, metavar='N',
help='number of hypotheses to output')
group.add_argument('--max-len-a', default=0, type=float, metavar='N',
help=('generate sequences of maximum length ax + b, '
'where x is the source length'))
group.add_argument('--max-len-b', default=200, type=int, metavar='N',
help=('generate sequences of maximum length ax + b, '
'where x is the source length'))
group.add_argument('--min-len', default=1, type=float, metavar='N',
help=('minimum generation length'))
group.add_argument('--match-source-len', default=False, action='store_true',
help=('generations should match the source length'))
group.add_argument('--no-early-stop', action='store_true',
help='deprecated')
group.add_argument('--unnormalized', action='store_true',
help='compare unnormalized hypothesis scores')
group.add_argument('--no-beamable-mm', action='store_true',
help='don\'t use BeamableMM in attention layers')
group.add_argument('--lenpen', default=1, type=float,
help='length penalty: <1.0 favors shorter, >1.0 favors longer sentences')
group.add_argument('--unkpen', default=0, type=float,
help='unknown word penalty: <0 produces more unks, >0 produces fewer')
group.add_argument('--replace-unk', nargs='?', const=True, default=None,
help='perform unknown replacement (optionally with alignment dictionary)')
group.add_argument('--sacrebleu', action='store_true',
help='score with sacrebleu')
group.add_argument('--score-reference', action='store_true',
help='just score the reference translation')
group.add_argument('--prefix-size', default=0, type=int, metavar='PS',
help='initialize generation by target prefix of given length')
group.add_argument('--no-repeat-ngram-size', default=0, type=int, metavar='N',
help='ngram blocking such that this size ngram cannot be repeated in the generation')
group.add_argument('--sampling', action='store_true',
help='sample hypotheses instead of using beam search')
group.add_argument('--sampling-topk', default=-1, type=int, metavar='PS',
help='sample from top K likely next words instead of all words')
group.add_argument('--sampling-topp', default=-1.0, type=float, metavar='PS',
help='sample from the smallest set whose cumulative probability mass exceeds p for next words')
group.add_argument('--temperature', default=1., type=float, metavar='N',
help='temperature for generation')
group.add_argument('--diverse-beam-groups', default=-1, type=int, metavar='N',
help='number of groups for Diverse Beam Search')
group.add_argument('--diverse-beam-strength', default=0.5, type=float, metavar='N',
help='strength of diversity penalty for Diverse Beam Search')
group.add_argument('--diversity-rate', default=-1.0, type=float, metavar='N',
help='strength of diversity penalty for Diverse Siblings Search')
group.add_argument('--print-alignment', action='store_true',
help='if set, uses attention feedback to compute and print alignment to source tokens')
group.add_argument('--print-step', action='store_true')
# arguments for iterative refinement generator
group.add_argument('--iter-decode-eos-penalty', default=0.0, type=float, metavar='N',
help='if > 0.0, it penalized early-stopping in decoding.')
group.add_argument('--iter-decode-max-iter', default=10, type=int, metavar='N',
help='maximum iterations for iterative refinement.')
group.add_argument('--iter-decode-force-max-iter', action='store_true',
help='if set, run exact the maximum number of iterations without early stop')
group.add_argument('--iter-decode-with-beam', default=1, type=int, metavar='N',
help='if > 1, model will generate translations varying by the lengths.')
group.add_argument('--iter-decode-with-external-reranker', action='store_true',
help='if set, the last checkpoint are assumed to be a reranker to rescore the translations'),
group.add_argument('--retain-iter-history', action='store_true',
help='if set, decoding returns the whole history of iterative refinement')
# special decoding format for advanced decoding.
group.add_argument('--decoding-format', default=None, type=str, choices=['unigram', 'ensemble', 'vote', 'dp', 'bs'])
# fmt: on
return group
def add_interactive_args(parser):
group = parser.add_argument_group("Interactive")
# fmt: off
group.add_argument('--buffer-size', default=0, type=int, metavar='N',
help='read this many sentences into a buffer before processing them')
group.add_argument('--input', default='-', type=str, metavar='FILE',
help='file to read from; use - for stdin')
# fmt: on
def add_model_args(parser):
group = parser.add_argument_group("Model configuration")
# fmt: off
# Model definitions can be found under fairseq/models/
#
# The model architecture can be specified in several ways.
# In increasing order of priority:
# 1) model defaults (lowest priority)
# 2) --arch argument
# 3) --encoder/decoder-* arguments (highest priority)
from fairseq.models import ARCH_MODEL_REGISTRY
group.add_argument('--arch', '-a', default='fconv', metavar='ARCH',
choices=ARCH_MODEL_REGISTRY.keys(),
help='Model Architecture')
# fmt: on
return group