-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTable1_code.R
171 lines (126 loc) · 6.36 KB
/
Table1_code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Code for creating Table 1 in MIMIC data
library(tidyverse)
library(table1)
library(dplyr)
library(flextable)
library(magrittr)
df <- read_csv('data/cohorts/SCCM_cohort.csv', show_col_types = FALSE)
# Sex
df$sex_female <- factor(df$sex_female, levels=c(1,0), labels=c("Female", "Male"))
label(df$sex_female) <- "Sex"
# Age
label(df$admission_age) <- "Age overall"
units(df$admission_age) <- "years"
df$age_ranges <- df$admission_age
df$age_ranges[df$admission_age >= 18 & df$admission_age <= 44] <- "18 - 44"
df$age_ranges[df$admission_age >= 45 & df$admission_age <= 64] <- "45 - 64"
df$age_ranges[df$admission_age >= 65 & df$admission_age <= 74] <- "65 - 74"
df$age_ranges[df$admission_age >= 75 & df$admission_age <= 84] <- "75 - 84"
df$age_ranges[df$admission_age >= 85] <- "85 and higher"
label(df$age_ranges) <- "Age by group"
units(df$age_ranges) <- "years"
# new race column
#df$binary_race <- ifelse(df$race_group == "White", "White", "Non-white")
# Race/Ethnicity
#df$race_group <- factor(df$race_group, levels = c("Black", "Asian", "Hispanic", "White", "Other"),
#labels = c("Black", "Asian", "Hispanic", "White", "Other"))
label(df$race_group) <- "Race Group"
# English proficiency
df$eng_prof <- factor(df$eng_prof, levels=c(1,0), labels=c("Proficient", "Not proficient"))
label(df$eng_prof) <- "English Proficiency"
# Insurance
df$insurance<- factor(df$insurance, levels=c("Medicare","Medicaid", "Other"), labels=c("Medicare","Medicaid", "Other"))
label(df$insurance) <- "Insurance"
# # Year
# df$year <- factor(df$year, levels = c('2014', '2015'),
# labels = c('2014', '2015'))
# label(df$year) <- "Year of Admission"
# Admission SOFA
#df$SOFA_ranges <- factor(df$SOFA_ranges, levels = c('0-3', '4-6', '7-10', '>10'),
# labels = c('0 - 3', '4 - 6','7 - 10', '11 and above'))
label(df$SOFA) <- "SOFA"
# label(df$SOFA_ranges) <- "SOFA Ranges"
# Comorbidites
# df$CCI_ranges <- factor(df$CCI_ranges, levels = c('0-3', '4-6', '7-10', '>10'),
# labels = c('0 - 3', '4 - 6', '7 - 10', '11 and above'))
label(df$charlson_comorbidity_index) <- "Charlson Comorbidity Index (CCI)"
# label(df$CCI_ranges) <- "CCI Ranges"
#df$cirrhosis_present <- factor(df$cirrhosis_present, levels = c(0, 1),
# labels = c('Cirrhosis absent', 'Cirrhosis present'))
# label(df$cirrhosis_present) <- "Cirrhosis"
# df$heart_failure_present <- factor(df$heart_failure_present, levels = c(0, 1),
# labels = c('CHF absent', 'CHF present'))
# label(df$heart_failure_present) <- "Congestive Heart Failure (CHF)"
# df <- within(df, ckd_stages <- factor(ckd_stages, levels = c(0, 1, 2, 3, 4, 5)))
# df <- within(df, ckd_stages <- fct_collapse(ckd_stages, Absent=c("0", "1", "2"), Present=c("3", "4", "5")))
# label(df$ckd_stages) <- "CKD"
# Weight
label(df$weight_admit) <- "Weight"
units(df$weight_admit) <- "kg"
# Lactate
label(df$lactate_day1) <- "Lactate Day 1"
units(df$lactate_day1) <- "mmol/L"
label(df$lactate_freq_day1) <- "No. of Lactate Measurements Day 1"
label(df$lactate_day2) <- "Lactate Day 2"
units(df$lactate_day2) <- "mmol/L"
#label(df$lactate_freq_day2) <- "No. Measurements of Lactate in Day 2"
# Hemoglobin
#label(df$hemoglobin_min) <- "Min. Hemoglobin (entire stay)"
#units(df$hemoglobin_min) <- "g/dL"
# Outcomes
df$mortality_in <- factor(df$mortality_in, levels=c(1,0), labels=c("Died", "Survived"))
label(df$mortality_in) <- "In-hospital Mortality"
df$los_icu_ <- df$los_icu
label(df$los_icu) <- "Length of stay"
units(df$los_icu) <- "days"
# Mechanical Ventilation
#df$mech_vent_overall <- factor(df$mech_vent_overall, levels=c(1,0), labels=c("Received", "Not received"))
#label(df$mech_vent_overall) <- "Mechanical Ventilation"
# RRT
#df$rrt_overall <- factor(df$rrt_overall, levels=c(1,0), labels=c("Received", "Did not receive"))
#label(df$rrt_overall) <- "Renal Replacement Therapy"
# df$rrt_start_delta <- df$rrt_start_delta / 60
# label(df$rrt_start_delta) <- "Time elapsed before RRT"
# units(df$rrt_start_delta) <- "hours"
# VPs
#df$vasopressor_overall <- factor(df$vasopressor_overall, levels=c(1,0), labels=c("Received", "Not received"))
#label(df$vasopressor_overall) <- "Vasopressor(s)"
# Blood Transfusion
# df$transfusion_overall_yes <- factor(df$transfusion_overall_yes, levels=c(1,0), labels=c("Received", "Not received"))
# label(df$transfusion_overall_yes) <- "Blood Transfusion (entire stay)"
#df$transfusion_overall <- factor(df$transfusion_overall, levels=c(1,0), labels=c("Received", "Not received"))
#label(df$transfusion_overall) <- "Blood Transfusion (first 2 days)"
# label(df$transfusion_units_day1) <- "Volume of Blood received (day 1)"
# units(df$transfusion_units_day1) <- "mL"
# # label(df$transfusion_units_day2) <- "Volume of Blood received (day 2)"
# units(df$transfusion_units_day2) <- "mL"
# Fluids
#df$fluids_overall_yes <- factor(df$fluids_overall_yes, levels=c(1,0), labels=c("Received", "Not received"))
#label(df$fluids_overall_yes) <- "Fluids (entire stay)"
#df$fluids_yes <- factor(df$fluids_yes, levels=c(1,0), labels=c("Received", "Not received"))
#label(df$fluids_yes) <- "Fluids (during the 2 first days)"
#label(df$fluids_volume) <- "Volume of Fluids received (day 1)"
#units(df$fluids_volume) <- "mL"
# label(df$fluids_sum_day2) <- "Volume of Fluids received (day 2)"
# units(df$fluids_sum_day2) <- "mL"
render.categorical <- function(x, ...) {
c("", sapply(stats.apply.rounding(stats.default(x)), function(y) with(y,
sprintf("%s (%s%%)", prettyNum(FREQ, big.mark=","), PCT))))
}
render.strat <- function (label, n, ...) {
sprintf("<span class='stratlabel'>%s<br><span class='stratn'>(N=%s)</span></span>",
label, prettyNum(n, big.mark=","))
}
# Create Table1 Object
tbl1 <- table1(~ sex_female + age_ranges + eng_prof + insurance + charlson_comorbidity_index +
lactate_day1 + lactate_freq_day1 +
los_icu
| race_group,
data=df,
render.missing=NULL,
topclass="Rtable1-grid Rtable1-shade Rtable1-times",
render.categorical=render.categorical,
render.strat=render.strat
)
# Convert to flextable
t1flex(tbl1) %>% jpeg(file="results/table1/SCCM.jpg")