-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_i3d.py
182 lines (168 loc) · 7.27 KB
/
test_i3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from ops.utils import get_logger, AverageMeter, accuracy
from archs.i3d_model import I3D
from tools.metric import ConfusionMatrix
import random
from archs.fusion_i3d import fusion
from ops import videotransforms
from opts import parser
from ops.drive_dataset_with_keypoint_i3d import Drive as Dataset
SEED = 777
random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
args = parser.parse_args()
test_transforms = transforms.Compose(
[videotransforms.CenterCrop(args.input_size)]
)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
def load_model(checkpoint_path):
if args.arch == 'i3d':
model = I3D(num_classes=args.num_class)
elif args.arch == 'i3d_all':
model = fusion(first=args.first, second=args.second,
stride=args.gcn_stride, patch_size=args.patch_size,
concat_layer=args.concat_layer, xyc=args.xyc, bn=args.bn)
pretrained_dict = torch.load(checkpoint_path)
state_dict = pretrained_dict['state_dict']
epoch = pretrained_dict['epoch']
model.cuda()
model = nn.DataParallel(model)
model.load_state_dict(state_dict, strict=False)
return model,epoch
def main():
model,epoch = load_model(args.model_path)
global logger
logger = get_logger(args, 'test')
val_dataset = Dataset(args.root, args.val_split, args.task, args.view, 'val', test_transforms)
val_dataloader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True
)
test_dataset = Dataset(args.root, args.test_split, args.task, args.view, 'test', test_transforms)
test_dataloader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True
)
val(model,epoch,val_dataloader)
test(model,epoch,test_dataloader)
@torch.no_grad()
def val(model,epoch,val_dataloader):
CM = ConfusionMatrix(34)
top1 = AverageMeter()
top5 = AverageMeter()
rgb_losses = AverageMeter()
ske_losses = AverageMeter()
tot_loss = AverageMeter()
model.eval()
logger.info("The best model epoch is :{}".format(epoch))
for i, (input, target, ske_joint, bbox) in enumerate(val_dataloader):
batch_size = input.size(0)
input = input.cuda()
target = target.cuda()
bbox = bbox.cuda()
per_frame_logits = model(input, ske_joint, bbox)
if type(per_frame_logits) is tuple:
rgb_loss = F.cross_entropy(per_frame_logits[0], target)
ske_loss = F.cross_entropy(per_frame_logits[1], target)
rgb_losses.update(rgb_loss.item(), input.size(0))
ske_losses.update(ske_loss.item(), input.size(0))
loss = rgb_loss + ske_loss
# measure accuracy and record loss
prec1, prec5 = accuracy(per_frame_logits[0].data, target, topk=(1, 5))
per_frame_logits = per_frame_logits[0]
else:
prec1, prec5 = accuracy(per_frame_logits.data, target, topk=(1, 5))
loss = F.cross_entropy(per_frame_logits, target)
CM.update(target, per_frame_logits)
tot_loss.update(loss.item(), per_frame_logits.size(0))
top1.update(prec1.item(), batch_size)
top5.update(prec5.item(), batch_size)
if i % 20 == 0 or i == len(val_dataloader) - 1:
output = ('Val: [{0}/{1}]\t'
'Ske_Loss {ske_loss.val:.4f} ({ske_loss.avg:.4f})\t'
'RGB_Loss {rgb_loss.val:.4f} ({rgb_loss.avg:.4f})\t'
'Loss {tot_loss.val:.4f} ({tot_loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_dataloader) - 1, tot_loss=tot_loss, ske_loss=ske_losses, rgb_loss=rgb_losses,
top1=top1, top5=top5))
logger.info(output)
prec = 0.0
for p in CM.precision():
prec += p
prec_avg = prec / 33
recall = 0.0
for p in CM.recall():
recall += p
recall_avg = recall / 33
logger.info("Val Stage: class-wise precision: {}\nclass-wise recall: {}".format(CM.precision(), CM.recall()))
logger.info(
"Val View: {}, top1 acc: {:.2f}, top5 acc: {:.2f}, precision: {:.2f}, recall: {:.2f}".format(
args.view.split('/')[-1], top1.avg,
top5.avg, prec_avg * 100, recall_avg * 100))
@torch.no_grad()
def test(model,epoch,test_dataloader):
top1 = AverageMeter()
top5 = AverageMeter()
rgb_losses = AverageMeter()
ske_losses = AverageMeter()
tot_loss = AverageMeter()
model.eval()
logger.info("The best model epoch is :{}".format(epoch))
CM = ConfusionMatrix(34)
for i, (input, target, ske_joint, bbox) in enumerate(test_dataloader):
batch_size = input.size(0)
input = input.cuda()
target = target.cuda()
bbox = bbox.cuda()
per_frame_logits = model(input, ske_joint, bbox)
if type(per_frame_logits) is tuple:
rgb_loss = F.cross_entropy(per_frame_logits[0], target)
ske_loss = F.cross_entropy(per_frame_logits[1], target)
rgb_losses.update(rgb_loss.item(), input.size(0))
ske_losses.update(ske_loss.item(), input.size(0))
loss = rgb_loss + ske_loss
# measure accuracy and record loss
prec1, prec5 = accuracy(per_frame_logits[0].data, target, topk=(1, 5))
per_frame_logits = per_frame_logits[0]
else:
prec1, prec5 = accuracy(per_frame_logits.data, target, topk=(1, 5))
loss = F.cross_entropy(per_frame_logits, target)
CM.update(target, per_frame_logits)
tot_loss.update(loss.item(), per_frame_logits.size(0))
top1.update(prec1.item(), batch_size)
top5.update(prec5.item(), batch_size)
if i % 20 == 0 or i == len(test_dataloader) - 1:
output = ('Test: [{0}/{1}]\t'
'Ske_Loss {ske_loss.val:.4f} ({ske_loss.avg:.4f})\t'
'RGB_Loss {rgb_loss.val:.4f} ({rgb_loss.avg:.4f})\t'
'Loss {tot_loss.val:.4f} ({tot_loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(test_dataloader) - 1, tot_loss=tot_loss, ske_loss=ske_losses, rgb_loss=rgb_losses,
top1=top1, top5=top5))
logger.info(output)
prec = 0.0
for p in CM.precision():
prec += p
prec_avg = prec / 34
recall = 0.0
for p in CM.recall():
recall += p
recall_avg = recall / 34
logger.info("Test Stage: class-wise precision: {}\nclass-wise recall: {}".format(CM.precision(), CM.recall()))
logger.info(
"Test View: {}, top1 acc: {:.2f}, top5 acc: {:.2f}, precision(34): {:.2f}, recall(34): {:.2f}".format(
args.view.split('/')[-1], top1.avg, top5.avg,
prec_avg * 100, recall_avg * 100))
if __name__ == '__main__':
main()