-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
521 lines (354 loc) · 16.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
from flask import Flask, jsonify, render_template,request
import sqlite3
import pandas as pd
import json
import random
app = Flask(__name__)
global selected_course
@app.route('/')
def index():
conn = sqlite3.connect('university.db')
query = 'SELECT student_id, student_major,student_gpa,number_of_replaces FROM students'
df = pd.read_sql_query(query, conn)
total_students = df.count()[0]
query = """
SELECT student_name,student_major,student_gpa FROM students
ORDER BY student_gpa DESC,student_batch ASC
LIMIT 21
"""
df_s = pd.read_sql_query(query, conn)
conn.close()
student_dict = df_s.to_dict(orient='records')
on_propation = df[df["student_gpa"] < 2.2].count()["student_id"]
repeating = df[df["number_of_replaces"] > 0].count()["student_id"]
return render_template('students.html', on_propation=on_propation, total_students=total_students,
repeating=repeating, students=student_dict)
@app.route('/financials')
def financials():
conn = sqlite3.connect('university.db')
select_query = 'SELECT count(student_id), sum(student_outstanding_fees) FROM financials'
discount_query = 'SELECT scholarship_percentage,student_outstanding_fees, "max_credits/semester" FROM financials '
df = pd.read_sql_query(select_query, conn)
df_discount = pd.read_sql_query(discount_query, conn)
conn.close()
import math
def millify(n):
n = float(n)
millnames = ['', ' K', ' M', ' B', ' T']
millidx = max(0, min(len(millnames) - 1,
int(math.floor(0 if n == 0 else math.log10(abs(n)) / 3))))
return '£' + str(n / 10 ** (3 * millidx)) + str(millnames[millidx])
df_discount['sum'] = df_discount['student_outstanding_fees'] / (1 - df_discount['scholarship_percentage'] / 100)
student_count = df.loc[0, "count(student_id)"]
total = float(df.loc[0, "sum(student_outstanding_fees)"])
total_fees = millify(float(df.loc[0, "sum(student_outstanding_fees)"]))
total_discount = millify(float(df_discount['sum'].sum() - total))
return render_template('financials.html', student_count=student_count, total_fees=total_fees,
total_discount=total_discount)
@app.route('/get-students-cost')
def getStudentsCost():
conn = sqlite3.connect('university.db')
query = 'SELECT scholarship_percentage,student_outstanding_fees,student_major FROM financials'
df = pd.read_sql_query(query, conn)
conn.close()
df['original_fees'] = df['student_outstanding_fees'] / (1 - df['scholarship_percentage'] / 100)
df['student_outstanding_fees'] = df['student_outstanding_fees']
data = df.groupby(['student_major'])[['original_fees', 'student_outstanding_fees']].sum().reset_index()
data = data.rename(
columns={'student_major': 'country', 'original_fees': 'year2004', 'student_outstanding_fees': 'year2005'})
json_data = data.to_json(orient='records')
return json_data
@app.route('/get-scores')
def getScores():
global selected_course
selected_course = request.args.get('course')
conn = sqlite3.connect('university.db')
query = f"""SELECT courses.course_code, instructors.instructor_rating,instructors.instructor_name,course_semester, courses.course_year
FROM courses
INNER JOIN instructors ON courses.course_instructor = instructors.instructor_id
where course_code like '{selected_course}'"""
df = pd.read_sql_query(query, conn)
conn.close()
df["instructor_rating"] = round(df["instructor_rating"] + random.uniform(-0.5, 0.5), 2)
df["instructor_rating"] = df["instructor_rating"].apply(lambda x: 5 if x > 5 else x)
minimum = df["instructor_rating"].min()
mean = round(df["instructor_rating"].mean(), 2)
maximum = df["instructor_rating"].max()
list = []
for i in df.iterrows():
list.append(
{"instructor_name": i[1]["instructor_name"] + ", " + i[1]["course_semester"] + " " + str(
i[1]["course_year"]), "minimum_score": minimum,
"actual": round((i[1]["instructor_rating"] + random.uniform(-0.5, 0.5)), 2),
"average": mean, "maximum_score": maximum})
conn.close()
return jsonify(list)
@app.route('/instructors', methods=['GET', 'POST'])
def instructors():
global selected_course
if request.method == 'POST':
selected_major = request.form.get('majors')
selected_course = request.form.get('courses')
major = "Data Science"
conn = sqlite3.connect('university.db')
query = """SELECT distinct(course_title) FROM courses"""
pandas_query = f"SELECT distinct(course_code) FROM courses WHERE course_title LIKE '{major}'"
instructors_query = """
SELECT instructor_name, instructor_rating, department
FROM instructors
ORDER BY instructor_rating DESC
LIMIT 40;
"""
df = pd.read_sql_query(pandas_query, conn)
df_m = pd.read_sql_query(query, conn)
df_i = pd.read_sql_query(instructors_query, conn)
course_list = df["course_code"].tolist()
majors = df_m["course_title"].tolist()
instructors_dict = df_i.to_dict(orient="records")
conn.close()
return render_template('instructors.html', courses=course_list, majors=majors, instructors=instructors_dict)
@app.route('/get-instructor-percentage')
def getInstructorPercentage():
conn = sqlite3.connect('university.db')
query = "SELECT * FROM instructors"
df_i = pd.read_sql_query(query, conn)
df_g = df_i[df_i['instructor_rating'] > df_i['instructor_rating'].mean()]
count = []
for i in range(4):
count.append(
round(df_g['department'].value_counts().iloc[i] / df_i['department'].value_counts().iloc[i] * 100, 1))
return count
@app.route('/get_courses', methods=['GET'])
def get_courses():
major = request.args.get('major')
conn = sqlite3.connect('university.db')
pandas_query = f"SELECT distinct(course_code) FROM courses WHERE course_title like '{major}'"
df = pd.read_sql_query(pandas_query, conn)
courses = df["course_code"].tolist()
conn.close()
return jsonify({'courses': courses})
@app.route('/students')
def students():
conn = sqlite3.connect('university.db')
query = 'SELECT student_id, student_major,student_gpa,number_of_replaces FROM students'
df = pd.read_sql_query(query, conn)
total_students = df.count()[0]
query = """
SELECT student_name,student_major,student_gpa FROM students
ORDER BY student_gpa DESC,student_batch ASC
LIMIT 21
"""
df_s = pd.read_sql_query(query, conn)
conn.close()
student_dict = df_s.to_dict(orient='records')
on_propation = df[df["student_gpa"] < 2.2].count()["student_id"]
repeating = df[df["number_of_replaces"] > 0].count()["student_id"]
return render_template('students.html', on_propation=on_propation, total_students=total_students,
repeating=repeating, students=student_dict)
@app.route('/get-eng-gpa')
def getGPAEng():
conn = sqlite3.connect('university.db')
query = 'SELECT student_gpa,student_major FROM students'
df = pd.read_sql_query(query, conn)
conn.close()
df = df[df["student_major"] == "Engineering"]
gpa_counts = df.groupby(pd.cut(df["student_gpa"], [x / 10.0 for x in range(0, 42, 2)])).count()[
"student_gpa"].tolist()
distrib_intervals = [x / 10.0 for x in range(0, 42, 2)]
data = [{"GPA": distribution, "value": gpa} for gpa, distribution in zip(gpa_counts, distrib_intervals)]
return jsonify(data)
@app.route('/get-sc-gpa')
def getGPASC():
conn = sqlite3.connect('university.db')
query = 'SELECT student_gpa,student_major FROM students'
df = pd.read_sql_query(query, conn)
conn.close()
df = df[df["student_major"] == "Science"]
gpa_counts = df.groupby(pd.cut(df["student_gpa"], [x / 10.0 for x in range(0, 42, 2)])).count()[
"student_gpa"].tolist()
distrib_intervals = [x / 10.0 for x in range(0, 42, 2)]
data = [{"GPA": distribution, "value": gpa} for gpa, distribution in zip(gpa_counts, distrib_intervals)]
return jsonify(data)
@app.route('/get-cs-gpa')
def getGPACS():
conn = sqlite3.connect('university.db')
query = 'SELECT student_gpa,student_major FROM students'
df = pd.read_sql_query(query, conn)
conn.close()
df = df[df["student_major"] == "Computer Science"]
gpa_counts = df.groupby(pd.cut(df["student_gpa"], [x / 10.0 for x in range(0, 42, 2)])).count()[
"student_gpa"].tolist()
distrib_intervals = [x / 10.0 for x in range(0, 42, 2)]
data = [{"GPA": distribution, "value": gpa} for gpa, distribution in zip(gpa_counts, distrib_intervals)]
return jsonify(data)
@app.route('/get-math-gpa')
def getGPAMath():
conn = sqlite3.connect('university.db')
query = 'SELECT student_gpa,student_major FROM students'
df = pd.read_sql_query(query, conn)
conn.close()
df = df[df["student_major"] == "Mathematics"]
gpa_counts = df.groupby(pd.cut(df["student_gpa"], [x / 10.0 for x in range(0, 42, 2)])).count()[
"student_gpa"].tolist()
distrib_intervals = [x / 10.0 for x in range(0, 42, 2)]
data = [{"GPA": distribution, "value": gpa} for gpa, distribution in zip(gpa_counts, distrib_intervals)]
return jsonify(data)
@app.route('/get-scholarship-percentage')
def getScholarshipPercentage():
conn = sqlite3.connect('university.db')
query = """ SELECT student_batch,student_major,COUNT(student_id) as count
FROM financials
WHERE scholarship_percentage != 0
GROUP BY student_major, student_batch"""
df = pd.read_sql_query(query, conn)
df.set_index("student_batch", inplace=True)
result = df.reset_index().to_json(orient='records')
data = json.loads(result)
result_dict = {}
for entry in data:
year = entry["student_batch"]
major = entry["student_major"]
count = entry["count"]
if year not in result_dict:
result_dict[year] = {}
result_dict[year][major] = count
result_list = [{"year": year, **majors} for year, majors in result_dict.items()]
result_json = json.dumps(result_list, indent=2)
conn.close()
return result_json
@app.route('/get-mean-grades')
def getMeanGrades():
def convert_grades_to_format(grades_dict):
result_list = []
subjects = set(subject_year[0] for subject_year in grades_dict['student_grade'].keys())
years = set(subject_year[1] for subject_year in grades_dict['student_grade'].keys())
for year in sorted(years):
year_data = {"year": str(year)}
for subject in sorted(subjects):
subject_year_key = (subject, year)
if subject_year_key in grades_dict['student_grade']:
subject_grade = grades_dict['student_grade'][subject_year_key]
region = subject.lower()
year_data[region] = round(subject_grade, 3)
result_list.append(year_data)
return result_list
conn = sqlite3.connect('university.db')
query = """
SELECT student_major, course_year, AVG(student_grade) AS student_grade
FROM students
JOIN students_grades ON students.student_id = students_grades.student_id
GROUP BY student_major, course_year;
"""
df = pd.read_sql_query(query, conn)
df.set_index(['student_major', 'course_year'], inplace=True)
df.sort_values(by=['course_year'], inplace=True)
conn.close()
data = convert_grades_to_format(df.to_dict())
return jsonify(data)
@app.route('/get-major-enrollment')
def getMajorEnrollment():
conn = sqlite3.connect('university.db')
query = """SELECT student_major, student_batch, count(student_id) as count FROM students
GROUP BY student_major, student_batch"""
df = pd.read_sql_query(query, conn)
df.set_index(["student_major", "student_batch"], inplace=True)
conn.close()
result = {}
for key, value in df.iterrows():
category, year = key
if category not in result:
result[category] = []
result[category].append({"ax": str(year), "ay": int(value['count'])})
for category in result:
result[category] = sorted(result[category], key=lambda x: x["ax"])
result = dict(sorted(result.items()))
return jsonify(result)
@app.route('/get-majors-fees')
def getMajorsFees():
conn = sqlite3.connect('university.db')
query = """
SELECT student_major, student_batch ,sum(student_outstanding_fees) as student_outstanding_fees
FROM financials
GROUP BY student_major,student_batch"""
df = pd.read_sql_query(query, conn)
conn.close()
df.reset_index()
def convert_fees_to_format(df):
result_list = []
for _, row in df.iterrows():
entry = {
"major": row['student_major'],
"year": str(row['student_batch'] + " " + row['student_major']),
"fees": round(row['student_outstanding_fees'])
}
result_list.append(entry)
return result_list
data = convert_fees_to_format(df)
return jsonify(data)
@app.route('/get-students-count')
def getStudentsCount():
conn = sqlite3.connect('university.db')
query = 'SELECT student_id, student_major,student_gpa FROM students'
df = pd.read_sql_query(query, conn)
df_grouped = df.groupby("student_major")["student_id"].count()
conn.close()
data = [{"value": count, "major": major} for major, count in zip(df_grouped.index.tolist(), df_grouped.tolist())]
return jsonify(data)
@app.route('/get-instructor-rating-research-cs')
def getInstructorRatingResearchCs():
conn = sqlite3.connect('university.db')
query = 'SELECT instructor_name,instructor_rating,number_of_researches,department FROM instructors'
df = pd.read_sql_query(query, conn)
conn.close()
df_i = df[df["department"] == "Computer Science"]
df_i = df_i.drop(columns=['department'])
df_i = df_i.sort_values(by=['number_of_researches'], ascending=True)
df_i['instructor_name'] = df_i['instructor_name'].apply(lambda x: x.replace(x.split()[1], x.split()[1][0] + '.'))
data = df_i.rename(
columns={'instructor_name': 'country', 'instructor_rating': 'year2004', 'number_of_researches': 'year2005'})
json_data = data.to_json(orient='records')
return json_data
@app.route('/get-instructor-rating-research-eng')
def getInstructorRatingResearchEng():
conn = sqlite3.connect('university.db')
query = 'SELECT instructor_name,instructor_rating,number_of_researches,department FROM instructors'
df = pd.read_sql_query(query, conn)
conn.close()
df_i = df[df["department"] == "Engineering"]
df_i = df_i.drop(columns=['department'])
df_i = df_i.sort_values(by=['number_of_researches'], ascending=True)
df_i['instructor_name'] = df_i['instructor_name'].apply(lambda x: x.replace(x.split()[1], x.split()[1][0] + '.'))
data = df_i.rename(
columns={'instructor_name': 'country', 'instructor_rating': 'year2004', 'number_of_researches': 'year2005'})
json_data = data.to_json(orient='records')
return json_data
@app.route('/get-instructor-rating-research-sci')
def getInstructorRatingResearchSci():
conn = sqlite3.connect('university.db')
query = 'SELECT instructor_name,instructor_rating,number_of_researches,department FROM instructors'
df = pd.read_sql_query(query, conn)
conn.close()
df_i = df[df["department"] == "Science"]
df_i = df_i.drop(columns=['department'])
df_i = df_i.sort_values(by=['number_of_researches'], ascending=True)
df_i['instructor_name'] = df_i['instructor_name'].apply(lambda x: x.replace(x.split()[1], x.split()[1][0] + '.'))
data = df_i.rename(
columns={'instructor_name': 'country', 'instructor_rating': 'year2004', 'number_of_researches': 'year2005'})
json_data = data.to_json(orient='records')
return json_data
@app.route('/get-instructor-rating-research-math')
def getInstructorRatingResearchMath():
conn = sqlite3.connect('university.db')
query = 'SELECT instructor_name,instructor_rating,number_of_researches,department FROM instructors'
df = pd.read_sql_query(query, conn)
conn.close()
df_i = df[df["department"] == "Mathematics"]
df_i = df_i.drop(columns=['department'])
df_i = df_i.sort_values(by=['number_of_researches'], ascending=True)
df_i['instructor_name'] = df_i['instructor_name'].apply(lambda x: x.replace(x.split()[1], x.split()[1][0] + '.'))
data = df_i.rename(
columns={'instructor_name': 'country', 'instructor_rating': 'year2004', 'number_of_researches': 'year2005'})
json_data = data.to_json(orient='records')
return json_data
if __name__ == '__main__':
app.run(host="0.0.0.0", port=1628, debug=True)