-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
146 lines (116 loc) · 6.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import json
import torch
from torch import nn, optim
import torchvision
from torchvision import transforms, datasets, models
from torch.utils.data import DataLoader
from collections import OrderedDict
def build_model(arch, hidden_units, learning_rate):
if arch == 'vgg19':
model = models.vgg19(pretrained=True)
elif arch == 'vgg16':
model = models.vgg16(pretrained=True)
elif arch == 'alexnet':
model = models.alexnet(pretrained=True)
else:
raise ValueError("Please select: vgg19/vgg16/alexnet")
if arch == 'vgg19' or arch == 'vgg16':
in_features = model.classifier[0].in_features
classifier = nn.Sequential(OrderedDict([
('l1', nn.Linear(in_features, hidden_units)), ('dropout1', nn.Dropout(0.5)), ('relu1', nn.ReLU()),
('l2', nn.Linear(hidden_units, 102)),
('output_layer', nn.LogSoftmax(dim=1))]))
model.classifier = classifier
elif arch == 'alexnet':
in_features = model.classifier[1].in_features
classifier = nn.Sequential(OrderedDict([
('l1', nn.Linear(in_features, hidden_units)), ('dropout1', nn.Dropout(0.5)), ('relu1', nn.ReLU()),
('l2', nn.Linear(hidden_units, 102)),
('output_layer', nn.LogSoftmax(dim=1))]))
model.classifier = classifier
return model, classifier
def save_checkpt(model, hidden_units, epochs, optimizer, path):
checkpoint = {'arch': 'vgg19',
'state_idx': model.state_dict(),
'class_to_idx': imagefolder_datasets[0].class_to_idx,
'optimizer_state_dict': optimizer.state_dict(),
'classifier': classifier,
'hidden_units': hidden_units,
'epochs': epochs
}
torch.save(checkpoint, path)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Training part of COMMAND LINE APPLICATION")
parser.add_argument("data_dir", type=str)
parser.add_argument('--save_dir', type=str, action='store', default='checkpt.pth')
parser.add_argument('--arch', type=str, default='vgg19', choices=['vgg19', 'vgg16', 'alexnet'])
parser.add_argument('--learning_rate', type=float, default=0.01)
parser.add_argument('--hidden_units', type=int, default=512)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--gpu', action='store_true')
args = parser.parse_args()
data_dir = args.data_dir
path = 'checkpt.pth'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
test_dir = data_dir + '/test'
training_transform = transforms.Compose([transforms.RandomResizedCrop(size=244),
transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(), transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
validation_transform = transforms.Compose([transforms.Resize(size=255),
transforms.CenterCrop(size=224),
transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
testing_transform = transforms.Compose([transforms.Resize(size=255),
transforms.CenterCrop(size=224),
transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
imagefolder_datasets = [datasets.ImageFolder(train_dir, transform=training_transform),
datasets.ImageFolder(valid_dir, transform=validation_transform),
datasets.ImageFolder(test_dir, transform=testing_transform)]
dataloader_sets = [torch.utils.data.DataLoader(imagefolder_datasets[0], batch_size=64, shuffle=True),
torch.utils.data.DataLoader(imagefolder_datasets[1], batch_size=64, shuffle=True),
torch.utils.data.DataLoader(imagefolder_datasets[2], batch_size=64, shuffle=True)]
model, classifier = build_model(args.arch, args.hidden_units, args.learning_rate)
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr=args.learning_rate)
device = torch.device("cuda" if (args.gpu and torch.cuda.is_available()) else "cpu")
model.to(device)
steps = 0
freq = 10
for epoch in range(args.epochs):
model.train()
train_loss = 0
for inputs, labels in dataloader_sets[0]:
steps += 1
if args.gpu:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
output = model.forward(inputs)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
if steps % freq == 0:
model.eval()
valid_loss = 0
accuracy = 0
for v_inputs, v_labels in dataloader_sets[1]:
optimizer.zero_grad()
v_inputs, v_labels = v_inputs.to(device), v_labels.to(device)
model.to(device)
with torch.no_grad():
output = model.forward(v_inputs)
valid_loss = criterion(output, v_labels)
ps = torch.exp(output).data
top_prob, top_class = ps.topk(1, dim=1)
cal = top_class == v_labels.view(*top_class.shape)
accuracy += torch.mean(cal.type(torch.FloatTensor)).item()
(print(f"Epoch=> {epoch + 1}/{args.epochs} ",
f"Training=> Loss: {train_loss / freq:.3f} ",
f"Validation=> Loss: {valid_loss / len(dataloader_sets[1]):.3f} Accuracy: {accuracy / len(dataloader_sets[1]):.4f}"))
train_loss = 0
save_checkpt(model, optimizer, args.epochs, path, classifier)