forked from Nuri22/csDetector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperspectiveAnalysis.py
176 lines (134 loc) · 4.53 KB
/
perspectiveAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from datetime import datetime
import json
import time
import requests
import math
from typing import List
from configuration import Configuration
def getToxicityPercentage(config: Configuration, comments: List):
if config.googleKey is None:
return 0
# comment out to pause toxicity analysis
# return 0
# estimate completion
qpsLimit = 1
buffer = 5
queryLimit = (qpsLimit * 60) - buffer
toxicityMinutes = math.ceil(len(comments) / queryLimit)
print(
f" Toxicity per comment, expecting around {toxicityMinutes} minute(s) completion time",
end="",
)
# declare toxicity results store
toxicResults = 0
# wait until the next minute
sleepUntilNextMinute()
# run analysis
for idx, comment in enumerate(comments):
# build request
url = (
"https://commentanalyzer.googleapis.com/v1alpha1/comments:analyze"
+ "?key="
+ config.googleKey
)
data_dict = {
"comment": {"text": comment},
"languages": ["en"],
"requestedAttributes": {"TOXICITY": {}},
}
# send request
response = requests.post(url=url, data=json.dumps(data_dict))
# parse response
dict = json.loads(response.content)
try:
toxicity = float(
dict["attributeScores"]["TOXICITY"]["summaryScore"]["value"]
)
except:
print()
e = dict["error"]
raise Exception(f'Error {e["code"]} {e["status"]}: {e["message"]}')
# add to results store if toxic
if toxicity >= 0.5:
toxicResults += 1
print(".", end="")
# we are only allowed 1 QPS, wait for a minute
if (idx + 1) % queryLimit == 0:
print()
print(" QPS limit reached, napping", end="")
sleepUntilNextMinute()
print(", processing", end="")
print()
# calculate percentage of toxic comments
percentage = 0 if len(comments) == 0 else toxicResults / len(comments)
return percentage
def sleepUntilNextMinute():
t = datetime.utcnow()
sleeptime = 60 - (t.second + t.microsecond / 1000000.0)
time.sleep(sleeptime)
# from datetime import datetime
# import json
# import time
# import requests
# import math
# from typing import List
# from configuration import Configuration
# def getToxicityPercentage(config: Configuration, comments: List):
# # comment out to pause toxicity analysis
# # return 0
# # estimate completion
# qpsLimit = 1
# buffer = 5
# queryLimit = (qpsLimit * 60) - buffer
# toxicityMinutes = math.ceil(len(comments) / queryLimit)
# print(
# f" Toxicity per comment, expecting around {toxicityMinutes} minute(s) completion time",
# end="",
# )
# # declare toxicity results store
# toxicResults = 0
# # wait until the next minute
# sleepUntilNextMinute()
# # run analysis
# for idx, comment in enumerate(comments):
# # build request
# url = (
# "https://commentanalyzer.googleapis.com/v1alpha1/comments:analyze"
# + "?key="
# + config.googleKey
# )
# data_dict = {
# "comment": {"text": comment},
# "languages": ["en"],
# "requestedAttributes": {"TOXICITY": {}},
# }
# # send request
# response = requests.post(url=url, data=json.dumps(data_dict))
# # parse response
# dict = json.loads(response.content)
# try:
# toxicity = float(
# dict["attributeScores"]["TOXICITY"]["summaryScore"]["value"]
# )
# except:
# print()
# e = dict["error"]
# raise Exception(f'Error {e["code"]} {e["status"]}: {e["message"]}')
# # add to results store if toxic
# if toxicity >= 0.5:
# toxicResults += 1
# print(".", end="")
# # we are only allowed 1 QPS, wait for a minute
# if (idx + 1) % queryLimit == 0:
# print()
# print(" QPS limit reached, napping", end="")
# sleepUntilNextMinute()
# print(", processing", end="")
# print()
# # calculate percentage of toxic comments
# percentage = 0 if len(comments) == 0 else toxicResults / len(comments)
# return percentage
# def sleepUntilNextMinute():
# t = datetime.utcnow()
# sleeptime = 60 - (t.second + t.microsecond / 1000000.0)
# time.sleep(sleeptime)