-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
314 lines (233 loc) · 11.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pandas as pd
import numpy as np
import torchvision.models as models
class EfficientNetClassifier(nn.Module):
def __init__(self, model="efficientnet_b0", weights="IMAGENET1K_V1", out_features=1):
super().__init__()
# Load model
self.model = models.get_model(model, weights=weights)
# Get the correct last layer depending on the selected model
if model == "efficientnet_b0":
self.model.classifier[1] = nn.Linear(in_features=1280, out_features=out_features)
elif model == "efficientnet_b1":
self.model.classifier[1] = nn.Linear(in_features=1280, out_features=out_features)
elif model == "efficientnet_b2":
self.model.classifier[1] = nn.Linear(in_features=1408, out_features=out_features)
elif model == "efficientnet_b3":
self.model.classifier[1] = nn.Linear(in_features=1536, out_features=out_features)
elif model == "efficientnet_b4":
self.model.classifier[1] = nn.Linear(in_features=1792, out_features=out_features)
elif model == "efficientnet_b5":
self.model.classifier[1] = nn.Linear(in_features=2048, out_features=out_features)
elif model == "efficientnet_b6":
self.model.classifier[1] = nn.Linear(in_features=2304, out_features=out_features)
elif model == "efficientnet_b7":
self.model.classifier[1] = nn.Linear(in_features=2560, out_features=out_features)
elif model == "efficientnet_v2_s":
self.model.classifier[1] = nn.Linear(in_features=1280, out_features=out_features)
elif model == "efficientnet_v2_m":
self.model.classifier[1] = nn.Linear(in_features=1280, out_features=out_features)
elif model == "efficientnet_v2_l":
self.model.classifier[1] = nn.Linear(in_features=1280, out_features=out_features)
for param in self.model.parameters():
param.require_grad = True
def forward(self, x):
x = self.model.features(x)
x = self.model.avgpool(x)
x = torch.flatten(x, 1)
x = self.model.classifier(x)
return x
class MulticlassRegression(pl.LightningModule):
def __init__(self, hparams, dataset, model):
super().__init__()
self.model = model
self.save_hyperparameters(hparams)
self.dataset = {"train": dataset[0], "val": dataset[1], "test": dataset[2]}
def forward(self, x):
x = self.model(x)
# x = torch.sigmoid(x)
return x
def general_step(self, batch, batch_idx, mode):
images, targets = batch
# forward pass
out = self.forward(images)
# loss
targets = targets.float().view(-1, 1)
loss = F.mse_loss(out, targets)
preds = out.argmax(axis=1)
n_correct = (targets == preds).sum()
return loss, n_correct
def general_end(self, outputs, mode):
# average over all batches aggregated during one epoch
avg_loss = torch.stack([x[mode + '_loss'] for x in outputs]).mean()
total_correct = torch.stack([x[mode + '_n_correct'] for x in outputs]).sum().cpu().numpy()
acc = total_correct / len(self.dataset[mode])
return avg_loss, acc
def training_step(self, batch, batch_idx):
loss, n_correct = self.general_step(batch, batch_idx, "train")
self.log("train_loss", loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
return {'loss': loss, 'train_n_correct': n_correct}
def validation_step(self, batch, batch_idx):
loss, n_correct = self.general_step(batch, batch_idx, "val")
self.log("val_loss", loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
return {'val_loss': loss, 'val_n_correct': n_correct}
def test_step(self, batch, batch_idx):
loss, n_correct = self.general_step(batch, batch_idx, "test")
return {'test_loss': loss, 'test_n_correct': n_correct}
def predict_step(self, batch, batch_idx, dataloader_idx=0):
return self(batch).squeeze().cpu().numpy()
def validation_end(self, outputs):
avg_loss, acc = self.general_end(outputs, "val")
# print("Val-Acc={}".format(acc))
return {'val_loss': avg_loss, 'val_acc': acc}
def train_dataloader(self):
return DataLoader(self.dataset["train"], num_workers=16, pin_memory=True, batch_size=self.hparams["batch_size"], shuffle=True)
def val_dataloader(self):
return DataLoader(self.dataset["val"], num_workers=16, pin_memory=True, batch_size=self.hparams["batch_size"])
def test_dataloader(self):
return DataLoader(self.dataset["test"], num_workers=16, pin_memory=True, batch_size=self.hparams["batch_size"])
def configure_optimizers(self):
optim = torch.optim.Adam(self.model.parameters(), self.hparams["learning_rate"])
return optim
def get_val_pred_scores(self, loader=None):
self.model.eval()
self.model = self.model.to(self.device)
if not loader: loader = self.val_dataloader()
scores = []
labels = []
for batch in loader:
X, y = batch
X = X.to(self.device)
score = self.forward(X)
scores.append(score.detach().cpu().numpy())
labels.append(y.detach().cpu().numpy())
scores = np.concatenate(scores, axis=0)
labels = np.concatenate(labels, axis=0)
self.model.train()
# Convert to dataframe and round scores
df_val = pd.DataFrame([scores.squeeze(), labels]).T.rename(columns={0: "scores", 1: "target"})
df_val["target"] = df_val["target"].astype(int)
df_val["prediction"] = df_val["scores"].apply(lambda x: round(x))
return df_val
def get_test_pred_scores(self, loader=None):
self.model.eval()
self.model = self.model.to(self.device)
if not loader: loader = self.test_dataloader()
scores = []
labels = []
for batch in loader:
X, y = batch
X = X.to(self.device)
score = self.forward(X)
scores.append(score.detach().cpu().numpy())
labels.append(y.detach().cpu().numpy())
scores = np.concatenate(scores, axis=0)
labels = np.concatenate(labels, axis=0)
self.model.train()
# Convert to dataframe and round scores
df_test = pd.DataFrame([scores.squeeze(), labels]).T.rename(columns={0: "scores", 1: "target"})
df_test["target"] = df_test["target"].astype(int)
df_test["prediction"] = df_test["scores"].apply(lambda x: round(x))
return df_test
def reset_weights(self):
self.model.reset_parameters()
class BinaryClassifierModel(pl.LightningModule):
def __init__(self, hparams, dataset, model):
super().__init__()
self.model = model
self.save_hyperparameters(hparams)
self.dataset = {"train": dataset[0], "val": dataset[1], "test": dataset[2]}
def forward(self, x):
x = self.model(x)
# x = torch.sigmoid(x)
return x
def general_step(self, batch, batch_idx, mode):
images, targets = batch
# forward pass
out = self.forward(images)
# loss
targets = targets.float().view(-1, 1)
loss = F.mse_loss(out, targets)
preds = out.argmax(axis=1)
n_correct = (targets == preds).sum()
return loss, n_correct
def general_end(self, outputs, mode):
# average over all batches aggregated during one epoch
avg_loss = torch.stack([x[mode + '_loss'] for x in outputs]).mean()
total_correct = torch.stack([x[mode + '_n_correct'] for x in outputs]).sum().cpu().numpy()
acc = total_correct / len(self.dataset[mode])
return avg_loss, acc
def training_step(self, batch, batch_idx):
loss, n_correct = self.general_step(batch, batch_idx, "train")
self.log("train_loss", loss)
return {'loss': loss, 'train_n_correct': n_correct}
def validation_step(self, batch, batch_idx):
loss, n_correct = self.general_step(batch, batch_idx, "val")
self.log("val_loss", loss)
return {'val_loss': loss, 'val_n_correct': n_correct}
def test_step(self, batch, batch_idx):
loss, n_correct = self.general_step(batch, batch_idx, "test")
return {'test_loss': loss, 'test_n_correct': n_correct}
def predict_step(self, batch, batch_idx, dataloader_idx=0):
return self(batch).squeeze().cpu().numpy()
def validation_end(self, outputs):
avg_loss, acc = self.general_end(outputs, "val")
# print("Val-Acc={}".format(acc))
return {'val_loss': avg_loss, 'val_acc': acc}
def train_dataloader(self):
return DataLoader(self.dataset["train"], num_workers=16, pin_memory=True, batch_size=self.hparams["batch_size"],
shuffle=True)
def val_dataloader(self):
return DataLoader(self.dataset["val"], num_workers=16, pin_memory=True, batch_size=self.hparams["batch_size"])
def test_dataloader(self):
return DataLoader(self.dataset["test"], num_workers=16, pin_memory=True, batch_size=self.hparams["batch_size"])
def configure_optimizers(self):
optim = torch.optim.Adam(self.model.parameters(), self.hparams["learning_rate"])
return optim
def get_val_pred_scores(self, loader=None):
self.model.eval()
self.model = self.model.to(self.device)
if not loader: loader = self.val_dataloader()
scores = []
labels = []
for batch in loader:
X, y = batch
X = X.to(self.device)
score = self.forward(X)
scores.append(score.detach().cpu().numpy())
labels.append(y.detach().cpu().numpy())
scores = np.concatenate(scores, axis=0)
labels = np.concatenate(labels, axis=0)
self.model.train()
# Convert to dataframe and round scores
df_val = pd.DataFrame([scores.squeeze(), labels]).T.rename(columns={0: "scores", 1: "target"})
df_val["target"] = df_val["target"].astype(int)
df_val["prediction"] = df_val["scores"].apply(lambda x: round(x))
return df_val
def get_test_pred_scores(self, loader=None):
self.model.eval()
self.model = self.model.to(self.device)
if not loader: loader = self.test_dataloader()
scores = []
labels = []
for batch in loader:
X, y = batch
X = X.to(self.device)
score = self.forward(X)
scores.append(score.detach().cpu().numpy())
labels.append(y.detach().cpu().numpy())
scores = np.concatenate(scores, axis=0)
labels = np.concatenate(labels, axis=0)
self.model.train()
# Convert to dataframe and round scores
df_test = pd.DataFrame([scores.squeeze(), labels]).T.rename(columns={0: "scores", 1: "target"})
df_test["target"] = df_test["target"].astype(int)
df_test["prediction"] = df_test["scores"].apply(lambda x: round(x))
return df_test
def reset_weights(self):
self.model.reset_parameters()