-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfunctions.py
585 lines (510 loc) · 23.8 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import json
import re
from urllib.request import urlopen
import requests
from bs4 import BeautifulSoup
from multiprocessing import Pool
from functools import partial
import pandas as pd
import numpy as np
from konlpy.tag import Mecab
import gensim
from sklearn.metrics.pairwise import cosine_similarity
from collections import defaultdict
mecab = Mecab()
word2vec_model = gensim.models.Word2Vec.load('word2vec_by_mecab.model')
containers = set(['NNG', 'NNP', 'NNB', 'NNBC', 'NR', 'NP', 'VV', 'VA', 'VX', 'VCP', 'VCN', 'MM'])
stop_words = set(['JKC', 'JKG', 'JKO', 'JKB', 'JKV', 'JKQ', 'JX', 'JC'])
useless_NNG = set(['만족', '구입', '구매', '생각', '때', '주문', '정도', '느낌', '맘', '마음', '상품', '제품', '물건'])
con = pd.read_csv("word_vector.csv", usecols=['0', 'total_value'])
word_index = set(con['0'].to_list())
con = np.array(con)
weights = np.load('weights.npy', allow_pickle=True)
hangul = re.compile('[^0-9a-zA-Z가-힣\s]')
sss_compile = re.compile('[^0-9a-zA-Z가-힣\s]')
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36'}
def make_score(x):
return 0 if x < -2.16 else (1 if x >= 1.84 else (x + 0.16) / 4 + 0.5)
def DNN_func(sentence):
after_preprocess = re.sub(r" {2,}", " ", hangul.sub(' ', sentence)).strip()
tmp = [text[0] for text in mecab.pos(after_preprocess) if
text[1][0] != 'E' and text[1][0] != 'S' and (text[1] == 'XR' or text[1][0] != 'X') and text[1][0] != 'J' and
text[1] != 'UNKNOWN' and text[0] != '.']
value = [float(con[con[:, 0] == word, 1]) if word in word_index else 0 for word in tmp]
value = value[:20] if len(value) >= 20 else np.pad(value, (0, 20 - len(value)), 'constant')
consider_relu = [0 if h < 0 else 1 for h in np.dot(value, weights[0]) + weights[1]]
arr = [*map(np.sum, [[h * weights[2][index] + weights[3] / (20 * 10) for index, h in enumerate(
[0 if consider_relu[index] == 0 else value[i] * weights[0][i][index] + weights[1][index] / 20 for index in
range(10)])] for i in range(20)])]
before_text = sentence.split(' ')
arr_num, values = 0, []
for before_mecab in before_text:
value_tmp = 0
for k in range(len(mecab.morphs(before_mecab))):
if arr_num + k >= 20: break
value_tmp = value_tmp + arr[arr_num + k]
else:
k = 0
arr_num = arr_num + k + 1
values.append(round(value_tmp, 3))
if len(values) < 3:
tmp = [max(values) for i in range(len(values))] if max(values) > min(values) * -1 else [min(values) for i in range(len(values))]
return before_text, [*map(lambda x, y: round((x + y) / 2, 2), tmp, values)]
tmp = []
for i in range(len(values)):
if i == 0:
big, small = max(values[i], values[i + 1], values[i + 2]), min(values[i], values[i + 1], values[i + 2])
if big >= small * -1:
tmp.append(big)
else:
tmp.append(small)
elif i == len(values) - 1:
big, small = max(values[i], values[i - 1], values[i - 2]), min(values[i], values[i - 1], values[i - 2])
if big >= small * -1:
tmp.append(big)
else:
tmp.append(small)
else:
big, small = max(values[i], values[i - 1], values[i + 1]), min(values[i], values[i - 1], values[i + 1])
if big >= small * -1:
tmp.append(big)
else:
tmp.append(small)
return before_text, [*map(lambda x, y: round((x + y) / 2, 2), tmp, values)]
def Crawling_11st(product_num, pageNo):
try:
url = 'https://m.11st.co.kr/products/v1/app/products/{}/reviews/list?pageNo={}&sortType=01&pntVals=&rtype=&themeNm='.format(
product_num, pageNo)
response = urlopen(url)
json_data = json.load(response)['review']['list']
temp = []
for rev in json_data:
if rev['subject']:
review = rev['subject'].replace('<br>', ' ')
if len(review) <= 3:
temp.append(['2018.02.27', '좋아요', ['좋아요'], [1.76], 9.1899])
continue
date = rev['createDt']
xai_before_text = []
xai_value = []
for sen in sss(review):
before_text, value = DNN_func(sen)
xai_before_text += before_text
# xai_before_text.extend(before_text)
xai_value += value
# xai_value.extend(value)
temp.append([date, review, xai_before_text, xai_value,
round(make_score(sum(xai_value) / len(xai_value)) * 10, 1)])
return temp
except:
temp = []
for _ in range(10):
temp.append(
['2018.02.27', '좋아요', ['좋아요'], [1.76], 9.1899])
return temp
def Crawling_Naver(product_num, merchant_num, store, pageNo):
try:
if store == 'shopping':
url = 'https://{}.naver.com/v1/reviews/paged-reviews?page={}&pageSize=10&merchantNo={}&originProductNo={}&sortType=REVIEW_RANKING'.format(
store, pageNo, merchant_num, product_num) # REVIEW_RANKING
elif store == 'smartstore':
url = 'https://{}.naver.com/i/v1/reviews/paged-reviews?page={}&pageSize=10&merchantNo={}&originProductNo={}&sortType=REVIEW_RANKING'.format(
store, pageNo, merchant_num, product_num) # REVIEW_RANKING
elif store == 'brand':
url = 'https://{}.naver.com/n/v1/reviews/paged-reviews?page={}&pageSize=10&merchantNo={}&originProductNo={}&sortType=REVIEW_RANKING'.format(
store, pageNo, merchant_num, product_num) # REVIEW_RANKING
else:
url = ''
response = urlopen(url)
json_data = json.load(response)['contents']
temp = []
for rev in json_data:
if rev['reviewContent']:
review = rev['reviewContent'].replace('/n', ' ')
if len(review) <= 3:
temp.append(['2018.02.27', '좋아요', ['좋아요'], [1.76], 9.1899])
continue
date = rev['createDate'].split('T')[0]
date = date.replace("-", ".")
xai_before_text = []
xai_value = []
for sen in sss(review):
before_text, value = DNN_func(sen)
xai_before_text += before_text
# xai_before_text.extend(before_text)
xai_value += value
# xai_value.extend(value)
temp.append([date, review, xai_before_text, xai_value,
round(make_score(sum(xai_value) / len(xai_value)) * 10, 1)])
return temp
except:
temp = []
for _ in range(10):
temp.append(
['2018.02.27', '좋아요', ['좋아요'], [1.76], 9.1899])
return temp
def sss(text):
text = re.sub(r" {2,}", " ", hangul.sub(' ', text))
end_char = set(['요', '다', '죠'])
avoid_char = set(['보다', '하려다', '하다', '려다'])
special_char = ['느림']
new_sentences = []
ts = text.split()
start, end, flag = 0, 0, 0
for i in range(len(ts)):
if (len(ts[i]) >= 2 and ts[i][-1] in end_char and ts[i][-2:] not in avoid_char) \
or ('ETN' == mecab.pos(ts[i])[-1][1].split('+')[-1]) or (ts[i][-2:] in special_char): # and mecab.pos(ts[i])[-1][1] != 'NNG'
end = i
new_sentences.append(' '.join(ts[start:end + 1]).strip())
start = end + 1
flag = 1
else:
if i == len(ts) - 1:
new_sentences.append(' '.join(ts[start:]).strip())
if not flag and len(new_sentences) == 0:
new_sentences.append(text)
return new_sentences
def change_name(tt):
tt = list(tt)
for i in range(len(tt)):
if tt[i] == '(' or tt[i] == '[':
start = i
elif tt[i] == ')' or tt[i] == ']':
end = i
tt[start:end + 1] = ['?' for i in range(len(tt[start:end + 1]))]
tt = ''.join(tt)
result_text = ''
for i in tt.split():
if '/' not in i:
result_text = result_text + ' ' + i
result_text = re.sub('[^0-9a-zA-Z가-힣\s]', '', result_text).strip()
return result_text
# 분석과정
def preprocessing(review_data):
for i in range(len(review_data)):
review_data.loc[i, 'review'] = re.sub('[^0-9가-힣\s]', '', review_data.loc[i, 'review'])
review_data = review_data.dropna().reset_index(drop=True)
return review_data
def morphs_tokenizer(review_data):
review_data_list = []
for i in range(len(review_data)):
rev = mecab.morphs(review_data[i])
rev2 = [w for w in rev if mecab.pos(w)[0][1] not in stop_words]
if rev2:
review_data_list.append(rev2)
return review_data_list
def morphs_pos(review_data):
review_data_list = []
for i in range(len(review_data)):
rev = mecab.pos(review_data.loc[i, 'review']) # mecab
review_data_list.append(rev)
return review_data_list
def return_nouns(review_data, if_pandas=True):
nouns = []
if if_pandas:
for i in range(len(review_data)):
noun = mecab.pos(review_data.loc[i, 'review'])
f_noun = [w for w, v in noun if v == 'NNG'] # or v=='VV' or v=='VX' or v='VA
nouns.append(f_noun)
else:
for i in range(len(review_data)):
noun = mecab.pos(review_data[i])
f_noun = [w for w, v in noun if v == 'NNG'] # or v=='VV' or v=='VX' or v='VA
nouns.append(f_noun)
return nouns
def count_noun(nouns):
vocab = dict()
for words in nouns:
for word in words:
if word not in vocab:
vocab[word] = 1
else:
vocab[word] += 1
vocab_sorted = sorted(vocab.items(), key=lambda x: x[1], reverse=True)[:30]
return vocab_sorted
def get_vector(word):
if word in word2vec_model:
return word2vec_model[word]
else:
return None
def return_keyword(review_data):
review_data_list = morphs_pos(review_data) # 형태소 토큰화
nouns = return_nouns(review_data) # 명사 추출
check_vocab = count_noun(nouns) # 명사 키워드
# JKS, JX_중요조사들
josa = ['JKS', 'JX'] # 품사 중 조사에 대한 표현 저장 #+JKO, JKB, JKG, JKV, JKC, JC
word_next_josa = defaultdict(int) # 단어 뒤에 조사가 붙는지에 대한 count를 저장하기 위한 딕셔너리
for i in range(len(review_data_list)):
for word, value in check_vocab: # 저장된 단어들 호출
for idx in range(len(review_data_list[i])):
if word == review_data_list[i][idx][0]:
if idx + 1 < len(review_data_list[i]) and review_data_list[i][idx + 1][
1] in josa: # 해당 단어의 다음에 조사가 나온다면
word_next_josa[word] += 1 # count 해줌
word_josa_count = sorted(word_next_josa.items(), key=lambda x: x[1], reverse=True)[:20] # count를 기준으로 sort 20개
keyword_before = [w for w,v in word_josa_count if v > 1]
similar_word = []
keyword = []
for key in keyword_before:
if key not in similar_word and key not in useless_NNG: #
keyword.append(key)
try:
result = word2vec_model.wv.most_similar(key)
r = [w for w, v in result]
similar_word.extend(r)
except KeyError as e:
pass
return keyword, check_vocab
def vectors(sentence):
# 각 문서에 대해서
doc2vec = None
count = 0
for word in sentence:
if word in set(word2vec_model.wv.index_to_key):
count += 1
# 해당 문서에 있는 모든 단어들의 벡터값을 더한다.
if doc2vec is None:
doc2vec = word2vec_model.wv.get_vector(word)
else:
doc2vec = doc2vec + word2vec_model.wv.get_vector(word)
if doc2vec is not None:
# 단어 벡터를 모두 더한 벡터의 값을 문서 길이로 나눠준다.
doc2vec = doc2vec / count
# 각 문서에 대한 문서 벡터 리스트를 리턴
return doc2vec
def return_review_data(data):
review_data = []
for i in range(len(data)):
for sentence in sss(data[i]):
review_data.append(sentence)
nouns = return_nouns(review_data, False) # 명사 추출
vocab_sorted = count_noun(nouns)
return review_data, vocab_sorted
def review_summarization(data):
data = preprocessing(data)
keyword, vocab_sorted = return_keyword(data)
review_data = []
for d in data.itertuples():
for sentence in sss(d.review):
review_data.append(sentence)
# for j in range(len(data)):
# for sentence in sss(data.loc[j, 'review']):
# review_data.append(sentence)
review_data_list_pre = morphs_tokenizer(review_data) # 형태소 토큰화
count = defaultdict(int)
for i in range(len(review_data_list_pre)):
for w in keyword:
if w == review_data_list_pre[i][0]:
count[w] += 1
counted = sorted(count.items(), key=lambda x: x[1], reverse=True)[:25]
keyword = [w for w, v in counted if v > 1]
review_data_word = {}
for word in keyword:
review_data_list = []
for i in range(len(review_data)):
if word in review_data[i]:
ws, value = DNN_func(review_data[i])
if 2 < len(review_data[i]) < 30:
temp_sent = [w for w in mecab.morphs(review_data[i]) if
w not in keyword]
if temp_sent:
doc2vec = vectors(temp_sent)
if doc2vec is not None:
review_data_list.append([i, review_data[i], doc2vec,
round(make_score(sum(value) / len(value)) * 100, 1)]) # [idx:]
review_data_word[word] = review_data_list
return review_data_word, keyword, vocab_sorted
def review_similarity_measurement(review_and_word):
review_data_word = {}
each_keyword_ratio = {}
for word in review_and_word:
total = 0
for i in range(len(review_and_word[word])):
total += review_and_word[word][i][3]
keyword_pos_neg_ratio = total / len(review_and_word[word])
each_keyword_ratio[word] = keyword_pos_neg_ratio
temp_list = []
# ver3
for i in range(len(review_and_word[word])):
if float(keyword_pos_neg_ratio) - 15 <= review_and_word[word][i][3] <= float(keyword_pos_neg_ratio) + 15:
temp_list.append(review_and_word[word][i])
review_data_word[word] = temp_list
for word in review_data_word:
doc_doc2vec = np.zeros(100, )
for i in range(len(review_data_word[word])):
doc_doc2vec = doc_doc2vec + review_data_word[word][i][2]
doc2average = doc_doc2vec / len(review_data_word[word])
review_data_word[word].append([np.nan, '리뷰들의 평균 벡터값입니다.', doc2average])
document_embedding_list = {}
for word in review_data_word:
if len(review_data_word[word]) >= 2:
document_embedding_list[word] = [review_data_word[word][0][2]]
for i in range(1, len(review_data_word[word])):
document_embedding_list[word].append(review_data_word[word][i][2])
cosine_similarities = {}
for word in document_embedding_list:
cosine_similarities[word] = cosine_similarity(document_embedding_list[word], document_embedding_list[word])
return cosine_similarities, review_data_word, each_keyword_ratio
def result_of_code(data):
# 키워드 별 리뷰 요약 출력 (문장길이에 제한을 두어, 너무 긴 문장을 체택하지 않게 설정 _ 긴문장을 택하려는 경향이 있음)
review_data_word, keyword, vocab_sorted = review_summarization(data)
cosine_similarities, review_data_word, keyword_ratio = review_similarity_measurement(review_data_word)
result = {}
for word in cosine_similarities.keys():
idx = list(cosine_similarities[word][-1]).index(sorted(cosine_similarities[word][-1], reverse=True)[1])
rev = review_data_word[word][idx][1]
if rev in result.values(): # 중복되는 문장에 대해선 그 다음 우선순위의 문장을 채택
idx = list(cosine_similarities[word][-1]).index(sorted(cosine_similarities[word][-1], reverse=True)[2])
rev = review_data_word[word][idx][1]
result[word] = rev
return result, keyword, vocab_sorted, keyword_ratio
def make_sim_word(keyword):
similar_word = {}
for word in keyword:
try:
similar_word[word] = [w for w, v in word2vec_model.wv.most_similar(word) if v >= 0.7]
except:
pass
return similar_word
def keyword_in_review(temp_review, keyword):
similar_word = make_sim_word(keyword)
temp_review = re.sub('[^0-9가-힣\s]', '', temp_review)
tokenized_review = mecab.morphs(temp_review)
result_word = []
# ver2
for word in tokenized_review:
for w in keyword:
if w in word and w not in result_word:
result_word.append(w)
else:
for key, sim_words in similar_word.items():
if word in sim_words and key not in result_word:
result_word.append(key)
return result_word
def similarity_and_major_similar_sentence(review_data, vocab_sorted, selected_review,
rate): # idx : 선택된 리뷰에서의 선택한 리뷰의 idx
check_vo = [w for w, v in vocab_sorted if v >= 3 and w not in useless_NNG]
most_N = ' '.join([w for w in check_vo]).strip()
all_line_of_review = []
for w, p in mecab.pos(selected_review):
if (p == 'NNG' or p == 'NNP') and w in most_N and w not in all_line_of_review:
all_line_of_review.append(w)
if len(all_line_of_review) == 0:
return [], [], [], []
all_review_of_same_word = []
for i in range(len(review_data)):
for word in all_line_of_review:
if 2 < len(review_data[i]) < 40 and word in review_data[i] and review_data[i] != selected_review:
all_review_of_same_word.append(review_data[i])
break
all_rev_of_same_word = []
for rev in all_review_of_same_word:
ws, value = DNN_func(rev)
if float(rate - 15) < make_score(sum(value) / len(value)) * 100 < float(
rate + 15) and rev not in all_rev_of_same_word:
all_rev_of_same_word.append(rev)
if len(all_rev_of_same_word) == 0:
return [], [], [], all_line_of_review
all_rev_of_same_word.append(selected_review)
for_similarity = []
for i, r in enumerate(all_rev_of_same_word):
if 2 < len(r) < 40 or i == len(all_rev_of_same_word) - 1: # [idx:]
doc2vec = vectors(r)
for_similarity.append(doc2vec) # [idx:]
if len(for_similarity) < 2:
return all_rev_of_same_word, [], []
cosine_similarities_for_similarity = cosine_similarity(for_similarity, for_similarity)
selected_line_with_similar_review_idx = [[i, r] for i, r in enumerate(cosine_similarities_for_similarity[-1])]
result_sorted = sorted(selected_line_with_similar_review_idx, key=lambda x: x[1], reverse=True)
result_same_sentences = []
for index, val in result_sorted[1:]:
if val >= 0.6:
result_same_sentences.append(all_rev_of_same_word[index])
return all_rev_of_same_word, result_same_sentences, result_sorted, all_line_of_review
def result_of_selected_review_s_same_reviews(selected_review, rate, review_data, vocab_sorted):
all_review_of_same_word, result_same_sentences, result_sorted, same_word = similarity_and_major_similar_sentence(
review_data, vocab_sorted, selected_review, rate)
same = 0
if not same_word:
return [[['문장속', 0], ['비교할만한', 0], ['특성이', 0], ['없습니다!', 0]]], 0
if not result_same_sentences:
return [[['유사한', 0], ['리뷰가', 0], ['없습니다!', 0]]], 0
checked_same_senteces = []
for rss in result_same_sentences:
each_rev = []
for rs in rss.split():
result_check_word_flag = []
result_check_word_flag.append(rs)
for sw in same_word:
if sw in rs:
result_check_word_flag.append(1)
break
else:
result_check_word_flag.append(0)
each_rev.append(result_check_word_flag)
checked_same_senteces.append(each_rev)
for idx, val in result_sorted[1:]:
if val > 0.5:
same += 1
same_rate = round((same / len(result_sorted)) * 100, 2)
return checked_same_senteces, same_rate
def lets_do_crawling(site, product_num, url_src=None):
if site == 1: # 11st
url_basic = 'https://www.11st.co.kr/products/{}'.format(product_num)
data = requests.get(url_basic, headers=headers)
soup = BeautifulSoup(data.text, 'html.parser')
category_path = soup.find('div', attrs={'class': 'c_product_category_path'}).find_all('em', attrs={
'class': 'selected'})
categories = ''
for cate in category_path:
if categories == '':
categories = cate.text
else:
categories = categories + ', ' + cate.text
product_name = re.sub('[/]', ' ', soup.find('h1', attrs={'class': 'title'}).text).strip()
img_src = soup.find('div', attrs={'class': 'img_full'}).find('img')['src']
price = soup.find('ul', attrs={'class': 'price_wrap'}).find('span', attrs={'class': 'value'}).text
pool = Pool(8)
func = partial(Crawling_11st, product_num)
tem = pool.map(func, range(1, 51))
pool.close()
pool.join()
else: # Naver
url_basic = url_src
store = url_basic.split('//')[1].split('.')[0] # smartstore, brand, shopping
data = requests.get(url_basic, headers=headers)
soup = BeautifulSoup(data.text, 'html.parser')
product_detail = soup.find_all('script')[1].text.split(',')
for detail in product_detail:
if '"payReferenceKey"' in detail:
merchant_num = detail.split(':')[1].replace('"', '')
break
else:
merchant_num = ''
for detail in product_detail:
if '"sellerImmediateDiscountPolicyNo"' in detail:
product_num = re.sub('[^0-9]', '', detail.split(':')[2].replace('"', ''))
break
product_info = soup.find_all('script')[0].text.split(',')
for info in product_info:
if '"category"' in info:
category = info.split(':')[1].replace('"', '')
categories = ', '.join(category.split('>'))
break
else:
categories = ''
product_name = soup.find('h3', attrs={'class': '_3oDjSvLwq9 _copyable'}).text.strip()
img_src = soup.find('div', attrs={'class': '_23RpOU6xpc'}).find('img')['src']
price = soup.find('span', attrs={'class': '_1LY7DqCnwR'}).text
pool = Pool(8)
func = partial(Crawling_Naver, product_num, merchant_num, store)
tem = pool.map(func, range(1, 51))
pool.close()
pool.join()
text = [j for i in tem for j in i]
tem_data = pd.DataFrame(text, columns=['date', 'review', 'xai_before_text', 'xai_value', 'xai_positive_negative'])
tem_data.drop_duplicates(['review'], inplace=True)
tem_data.reset_index(drop=True, inplace=True)
result, keyword, vocab_sorted, keyword_ratio = result_of_code(tem_data[['date', 'review']])
return tem_data, product_name, img_src, price, categories, result, keyword, keyword_ratio