forked from Shuai-Yuan-1997/T-Matrix-Method-Cylinder
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathT_matrix_for_Multiple_Cylinders.m
324 lines (296 loc) · 15 KB
/
T_matrix_for_Multiple_Cylinders.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
% This Matlab code calculates the scattering field of multiple multilayer 2-D plasma cylinders using T-matrix method. This method can also be used
% for approximately estimating the scattering field of long and thin 3-D cylinders.
% The T-matrix of a single cylinder can be calculated by generalized reflection coefficient method, then a T-matrix equation is formed for the multiple scattering problem.
% Notice: Large number of Mie series is needed for larger-scale problem. T-matrix method is suitable for calculating the scattering of many compact (~10 wavelength) scatters.
% Reference: S. S. A. Yuan, Z. H. Lin, L. -B. Lv, S. -J. Hao and W. E. I. Sha, "Investigating the Scattering Characteristics of Artificial Field-Aligned Irregularities Based on T-Matrix Algorithm," in IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 8, pp. 147-157, 2023.
% Shuai S. A. Yuan
% Email: shuaiyuan1997@zju.edu.cn
function T_matrix_for_Multiple_Cylinders
clc;clear
%% input
Wavelength=55; % Wavelength (m)
Polarization=1; % Polarizations (1-TM wave, 2-TE wave, 3-left circularly polarized wave, 4-right circularly polarized wave)
Radius=55;% Radius of a single cylinder, the cylinders are along the z axis
Layers=10;% Number of layers of a cylinder, the most outside layer is air layer
electron_density=6.5e11;
central_density=5*electron_density; % central electron density
Angle=90; % Angle between the incident plane wave and z axis
% Number and positons of the cylinders
%X_position=[0,0,0,3,-3,-3,3,3,-3]*Radius;
%Y_position=[0,3,-3,0,0,-3,3,-3,3]*Radius;
%X_position=[0]*Radius; % Single cylinder x
%Y_position=[0]*Radius; % Single cylinder y
X_position=[-3,3]*Radius;
Y_position=[-3,3]*Radius;
%% Parameters
ind_x=Wavelength;
Pn=length(X_position);
%incident angle
incident_angle=Angle/180*pi;
phi_angle=0/180*pi;
% basic parameter
epsc=1/(4*pi*9*10.^9); % permittivity in free space
murc=4*pi*10.^(-7); % permeability in free space
electron_charge=1.60217*10.^(-19);% electron charge (coulombs)
electron_mass=9.10938*10.^(-31); %electron mass (kg)
collision_frequency=1e3; % loss in drude model (rad/s)
num_layer=Layers; %number of layers
FAI_radius=Radius; %radius of FAI (m)
FAI_r=linspace(eps,eps+FAI_radius,num_layer);
FAI_w=FAI_radius*sqrt(-1/(log(electron_density/central_density))); % gaussian distribution coefficients
layer_density=central_density*exp(-FAI_r.^2/FAI_w^2);
% relative permittivity
Air=ones(1,length(ind_x))*1; % air
%Si_epr=3.4^2*ones(1,length(x))*1; % silicon
%% Wavenumber of incident wave
theta=incident_angle;
phi=phi_angle;
wavelength=ind_x;%m
k_0=2*pi/wavelength;
k_z=k_0*cos(theta);
k_rho=k_0*sin(theta);
k_x=k_rho*cos(phi);
k_y=k_rho*sin(phi);
omega=2*pi*3*10^8./wavelength;%
MAX=ceil(2*pi*FAI_radius/wavelength+4.05*(2*pi*FAI_radius/wavelength)^(1/3)+2); % Number of Mie series
L=num_layer;
% coefficient a
Z0=sqrt(murc/epsc);
% outmost layer coefficient for cylinder
% a at L layer, a 1x2 matrix amplitude for TE and TM
a=zeros(2,L,MAX);
for n=-MAX:1:MAX % for all harmonics % - infinite to + infinite, different from spherical case
%a(:,L,n+MAX+1)=[1j^(-n);1j^(-n)/Z0]; %
a(:,L,n+MAX+1)=[0;(1j^(-n)/Z0)]; % TM (1j^(n)) and TE (1j^(n)/Z0)
end%
%% ¹ãÒå·´ÉäϵÊý
for fre=1:length(wavelength)
fre
%eps_array=[Si_epr(fre),Air(fre)]; % relative permittivity (inner to outer)
%eps_array=[eps_save(fre),Air(fre),eps_save(fre),Air(fre)]; % relative permittivity (inner to outer)
%eps_array=[eps_save(fre),Air(fre),eps_save(fre),Air(fre)]; % relative permittivity (inner to outer)
mu_array=ones(1,num_layer); % relative permeability
rho_array=FAI_r(2:end); % radius (inner to outer)
% drude model for ionosphere plasma
plasma_fre=sqrt(electron_charge.^2*layer_density/epsc/electron_mass);
eps_plasma=1-(electron_charge.^2*layer_density/epsc/electron_mass/(omega(fre).^2+1i*omega(fre)*collision_frequency));%not relative
%eps_plasma=ones(1,num_layer);
%eps_plasma(1:L-1)=3;
eps_plasma(L)=1; %use air for most out layer
k_array=sqrt(mu_array.*eps_plasma)*2*pi/(wavelength(fre));
kz_array=k_array*cos(incident_angle);
krho_array=k_array*sin(incident_angle);
eps_array=eps_plasma*epsc;
%eps_array=eps_array*epsc;
mu_array=mu_array*murc;
rho_array=rho_array;%m
% inverse the order
inv_k_arr=k_array(end:-1:1);
inv_kz_arr=kz_array(end:-1:1);
inv_krho_arr=krho_array(end:-1:1);
inv_eps_arr=eps_array(end:-1:1);
inv_mu_arr=mu_array(end:-1:1);
inv_rho_arr=rho_array(end:-1:1);
% Outgoing wave R and T coef matrix (inner to outer)
for m=1:L-1;
for n=-MAX:1:MAX
R_Out(:,:,m,n+MAX+1)=... %inv(...) = D matrix
inv(J_matrix(n,krho_array(m),kz_array(m),rho_array(m),eps_array(m),omega(fre),mu_array(m))...
*cb2(n,krho_array(m+1),rho_array(m))-H_matrix(n,krho_array(m+1),kz_array(m+1),rho_array(m),...
eps_array(m+1),omega(fre),mu_array(m+1))*cb1(n,krho_array(m),rho_array(m)))*( cb2(n,...
krho_array(m),rho_array(m))*H_matrix(n,krho_array(m+1),kz_array(m+1),rho_array(m),...
eps_array(m+1),omega(fre),mu_array(m+1))- cb2(n,krho_array(m+1),rho_array(m))*H_matrix(n,...
krho_array(m),kz_array(m),rho_array(m),eps_array(m),omega(fre),mu_array(m)) );
T_Out(:,:,m,n+MAX+1)=...
inv(J_matrix(n,krho_array(m),kz_array(m),rho_array(m),eps_array(m),omega(fre),mu_array(m))...
*cb2(n,krho_array(m+1),rho_array(m))-H_matrix(n,krho_array(m+1),kz_array(m+1),rho_array(m),...
eps_array(m+1),omega(fre),mu_array(m+1))*cb1(n,krho_array(m),rho_array(m)))*( cb2(n,...
krho_array(m),rho_array(m))*J_matrix(n,krho_array(m),kz_array(m),rho_array(m),...
eps_array(m),omega(fre),mu_array(m))- cb1(n,krho_array(m),rho_array(m))*H_matrix(n,...
krho_array(m),kz_array(m),rho_array(m),eps_array(m),omega(fre),mu_array(m)) );
T_Out_test(:,:,m,n+MAX+1)=...
inv(J_matrix(n,krho_array(m),kz_array(m),rho_array(m),eps_array(m),omega(fre),mu_array(m))...
*cb2(n,krho_array(m+1),rho_array(m))-H_matrix(n,krho_array(m+1),kz_array(m+1),rho_array(m),...
eps_array(m+1),omega(fre),mu_array(m+1))*cb1(n,krho_array(m),rho_array(m)))*[eps_array(m),0;...
0,-mu_array(m)]*2*omega(fre)/pi/krho_array(m)^2/rho_array(m);
end
end
% Standing wave R and T coef matrix (outer to inner)
% R_43 R_32 R_21
for m=1:L-1;
for n=-MAX:1:MAX
R_In_inv(:,:,m,n+MAX+1)=... %inverse the eps mu k
inv(J_matrix(n,inv_krho_arr(m+1),inv_kz_arr(m+1),inv_rho_arr(m),inv_eps_arr(m+1),omega(fre),inv_mu_arr(m+1))...
*cb2(n,inv_krho_arr(m),inv_rho_arr(m))-H_matrix(n,inv_krho_arr(m),inv_kz_arr(m),inv_rho_arr(m),...
inv_eps_arr(m),omega(fre),inv_mu_arr(m))*cb1(n,inv_krho_arr(m+1),inv_rho_arr(m)))*( cb1(n,...
inv_krho_arr(m+1),inv_rho_arr(m))*J_matrix(n,inv_krho_arr(m),inv_kz_arr(m),inv_rho_arr(m),...
inv_eps_arr(m),omega(fre),inv_mu_arr(m))- cb1(n,inv_krho_arr(m),inv_rho_arr(m))*J_matrix(n,...
inv_krho_arr(m+1),inv_kz_arr(m+1),inv_rho_arr(m),inv_eps_arr(m+1),omega(fre),inv_mu_arr(m+1)) );
T_In_inv(:,:,m,n+MAX+1)=...
inv(J_matrix(n,inv_krho_arr(m+1),inv_kz_arr(m+1),inv_rho_arr(m),inv_eps_arr(m+1),omega(fre),inv_mu_arr(m+1))...
*cb2(n,inv_krho_arr(m),inv_rho_arr(m))-H_matrix(n,inv_krho_arr(m),inv_kz_arr(m),inv_rho_arr(m),...
inv_eps_arr(m),omega(fre),inv_mu_arr(m))*cb1(n,inv_krho_arr(m+1),inv_rho_arr(m)))*[inv_eps_arr(m),0;...
0,-inv_mu_arr(m)]*2*omega(fre)/pi/inv_krho_arr(m)^2/inv_rho_arr(m);
%notice the region and inverse, layer order exchange
end
end
% Standing wave R and T coef matrix£¨inner to outer£©
% R_21 R_32 R_43
R_In=R_In_inv(:,:,end:-1:1,:);
T_In=T_In_inv(:,:,end:-1:1,:);
R_In_test=R_In(:,:,end,6);
% Generalized R and T coef matrix Ref
Gen_R(:,:,1,:)=R_In(:,:,1,:);%first layer
for m=2:L-1
for n=-MAX:1:MAX
Gen_R(:,:,m,n+MAX+1)=R_In(:,:,m,n+MAX+1)+(T_Out(:,:,m,n+MAX+1)*Gen_R(:,:,m-1,n+MAX+1)...
*inv(eye(2)-R_Out(:,:,m,n+MAX+1)*Gen_R(:,:,m-1,n+MAX+1))*T_In(:,:,m,n+MAX+1));
end
end
%test_Tout(:,:,:)=T_Out(:,:,:,1);
test_Gen_R(:,:)=Gen_R(:,:,end,10);
% get coefficients ampititude
for m=L-1:-1:2
for n=-MAX:1:MAX
a(:,m,n+MAX+1)=inv(eye(2)-R_Out(:,:,m,n+MAX+1)*Gen_R(:,:,m-1,n+MAX+1))*T_In(:,:,m,n+MAX+1)*a(:,m+1,n+MAX+1);
end
end
for n=-MAX:1:MAX %most inner interface
a(:,1,n+MAX+1)=T_In(:,:,1,n+MAX+1)*a(:,2,n+MAX+1);
end
test_a(:,:,:)=a(:,1,1);
%% b vector
b=zeros((2*MAX+1)*2,1); % Including TM and TE
b_vector=zeros((2*MAX+1)*2*Pn,1);% Final b vector
for n=-MAX:1:MAX % for all harmonics
pol_index=[1,0,-1j,1j;0,1,1,1];
b(n+MAX+1)=1j^(-n)*pol_index(1,Polarization);%1j^(-n)
b(n+3*MAX+2)=1j^(-n)/Z0*pol_index(2,Polarization);%1j^(-n)/Z0
% b_test(n+MAX+1)=a(1,L,n+MAX+1);
% a_test(n+MAX+1)=Gen_R(1,1,L-1,n+MAX+1)*a(1,L,n+MAX+1);
end
for p=1:Pn
b_vector((p-1)*(4*MAX+2)+1:p*(4*MAX+2))=b*exp(-1j*(k_x*X_position(p)+k_y*Y_position(p)));
end
%% T matrix
T_i=zeros((2*MAX+1)*2,(2*MAX+1)*2);
T_matrix=zeros((2*MAX+1)*2*Pn,(2*MAX+1)*2*Pn);
for n=-MAX:1:MAX % for all harmonics
T_MM(n+MAX+1)=Gen_R(1,1,L-1,n+MAX+1);
T_MN(n+MAX+1)=Gen_R(1,2,L-1,n+MAX+1);
T_NM(n+MAX+1)=Gen_R(2,1,L-1,n+MAX+1);
T_NN(n+MAX+1)=Gen_R(2,2,L-1,n+MAX+1);
end
T_i=[diag(T_MM),diag(T_MN);diag(T_NM),diag(T_NN)];% T matrix of each scatterer
for pp=1:Pn % Phase difference between each scatterer
for qq=1:Pn
if pp==qq
T_matrix((pp-1)*(4*MAX+2)+1:pp*(4*MAX+2),(qq-1)*(4*MAX+2)+1:qq*(4*MAX+2))=T_i;
end
end
end
%% Translation matrix
Alpha_matrix=zeros((2*MAX+1)*2*Pn,(2*MAX+1)*2*Pn);
for pp=1:Pn
for qq=1:Pn
if pp~=qq
Alpha_matrix((pp-1)*(4*MAX+2)+1:pp*(4*MAX+2),(qq-1)*(4*MAX+2)+1:qq*(4*MAX+2))=...
translation_matrix(X_position(pp),Y_position(pp),X_position(qq),Y_position(qq),MAX,k_rho);
T_test=translation_matrix(X_position(pp),Y_position(pp),X_position(qq),Y_position(qq),MAX,k_rho);
end
end
end
%% Matrix inversion
matrix_test=T_matrix*Alpha_matrix;
% rank_test=rank(matrix_test);
a_vector=(eye((2*MAX+1)*2*Pn)-T_matrix*Alpha_matrix)\(T_matrix*b_vector);
a_vector_t=a_vector(1:(4*MAX+2));
a_vector_sum=zeros(4*MAX+2,1);
for tt=1:Pn
a_vector_sum=a_vector_sum+translation_matrix2(0,0,X_position(tt),Y_position(tt),MAX,k_rho)*...
a_vector((tt-1)*(4*MAX+2)+1:tt*(4*MAX+2));
end%
%% RCS calculation
% get near field (sample)
rrho=linspace(eps,2*rho_array(end)+eps,300);
%zz=linspace(-2*rho_array(end)+eps,2*rho_array(end)+eps,round(4*rho_array(end)/0.2*10^9));
zz=[0];
phi=linspace(eps,2*pi+eps,360);
%phi=[0,pi];
% e-field components
Field_z=zeros(2,length(rrho),length(zz),length(phi));
Farfield_z=zeros(2,length(phi));
Field_phi=zeros(2,length(rrho),length(zz),length(phi));
Field_rho=zeros(2,length(rrho),length(zz),length(phi));
% calculate Ez and Hz of each layer
% most outer part % air
s=L;
R_test=Gen_R(:,:,s-1,1);
% farfield E_z for RCS calculation
s=L;
for q=-MAX:1:MAX % order
for t=1:length(phi)% phi %
% Farfield_z(:,t)=Farfield_z(:,t)+2/(sqrt(krho_array(s)))*exp(1j*q*phi(t)-1j*q/2*pi)...
% *Gen_R(:,:,s-1,q+MAX+1)*a(:,s,q+MAX+1);
Farfield_z(:,t)=Farfield_z(:,t)+exp(1j*q*phi(t)+1j*q/2*pi)...
*Gen_R(:,:,s-1,q+MAX+1)*a(:,s,q+MAX+1);
exp_test(q+MAX+1)=exp(1j*q*phi(t)-1j*q/2*pi);
% the tangential field is very small when rho -> infinite
end
end
end
%% RCS£¬ T matrix method
RCS_TM=zeros(1,(2*MAX+1));
RCS_TE=zeros(1,(2*MAX+1));
for t=1:length(phi) % phi %
for q=-MAX:1:MAX %
if abs(q)<=MAX
RCS_TM(q+MAX+1)=exp(1j*q*phi(t)+1j*q/2*pi);
RCS_TE(q+MAX+1)=exp(1j*q*phi(t)+1j*q/2*pi)*Z0;
end
end
RCS(t)=2/k_rho/sin(theta)*(abs(RCS_TM*a_vector_sum(1:2*MAX+1)).^2+...
abs(RCS_TE*a_vector_sum(2*MAX+2:4*MAX+2)).^2);
end
length_cy=20*ind_x; % Length of cylinder for approximately calculating the RCS of finite cylinders
RCS=10.*log10(RCS*2*sin(theta)*(length_cy)^2/ind_x);%
plot(phi,RCS)
xlabel('Phi')
ylabel('RCS (dB)')
hold on
%% Cylindrical harmonic functions
% notice i and j
% Cylindrical Bessel 1 (J_n)
function output=cb1(degree,k_rho,rho)
output=besselj(degree,k_rho*rho);
% Derivative of Cylindrical Bessel 1 (J_n')
% function output=cb_der1(degree,k_rho,rho)
% output=(degree*cb1(degree-1,k_rho,rho)-(degree+1)*cb1(degree+1,k_rho,rho))/(2*degree+1);
function output=cb_der1(degree,k_rho,rho)
output=(cb1(degree-1,k_rho,rho)-cb1(degree+1,k_rho,rho))/2;
%different from the book?j_{n-1}-n/(k*rho)*j_{n}%
% Cylindrical Bessel 2 (H^1_n)
function output=cb2(degree,k_rho,rho)
output=besselh(degree,1,k_rho*rho);
% Derivative of Cylindrical Bessel 2 (H^1_n')
% function output=cb_der2(degree,k_rho,rho)
% output=(degree*cb2(degree-1,k_rho,rho)-(degree+1)*cb2(degree+1,k_rho,rho))/(2*degree+1);
function output=cb_der2(degree,k_rho,rho)
output=(cb2(degree-1,k_rho,rho)-cb2(degree+1,k_rho,rho))/2;
% J matrix
function output=J_matrix(degree,k_rho,k_z,rho,eps,omega,mu)
output=1/(k_rho^2*rho)*[1j*omega*eps*k_rho*rho*cb_der1(degree,k_rho,rho),-1*degree*k_z*cb1(degree,k_rho,rho);
-1*degree*k_z*cb1(degree,k_rho,rho), -1j*omega*k_rho*rho*mu*cb_der1(degree,k_rho,rho) ];%
% H matrix
function output=H_matrix(degree,k_rho,k_z,rho,eps,omega,mu)
output=1/(k_rho^2*rho)*[1j*omega*eps*k_rho*rho*cb_der2(degree,k_rho,rho),-1*degree*k_z*cb2(degree,k_rho,rho);
-1*degree*k_z*cb2(degree,k_rho,rho), -1j*omega*mu*k_rho*rho*cb_der2(degree,k_rho,rho) ];
% modified J and H matrix for the calculation of rho component of E field
% modified J matrix
function output=J_matrix2(degree,k_rho,k_z,rho,eps,omega,mu)
output=1/(k_rho^2*rho)*[omega*eps*degree*cb1(degree,k_rho,rho),1j*k_z*k_rho*rho*cb_der1(degree,k_rho,rho);
1j*k_z*k_rho*rho*cb_der1(degree,k_rho,rho), -1*omega*mu*degree*cb1(degree,k_rho,rho) ];
% modified H matrix
function output=H_matrix2(degree,k_rho,k_z,rho,eps,omega,mu)
output=1/(k_rho^2*rho)*[omega*eps*degree*cb2(degree,k_rho,rho),1j*k_z*k_rho*rho*cb_der2(degree,k_rho,rho);
1j*k_z*k_rho*rho*cb_der2(degree,k_rho,rho), -1*omega*mu*degree*cb2(degree,k_rho,rho) ];