Here, we show how to train a CycleGAN-turbo model using unpaired data. We will use the horse2zebra dataset introduced by CycleGAN as an example dataset.
-
First download the horse2zebra dataset from here using the command below.
bash scripts/download_horse2zebra.sh
-
Our training scripts expect the dataset to be in the following format:
data ├── dataset_name │ ├── train_A │ │ ├── 000000.png │ │ ├── 000001.png │ │ └── ... │ ├── train_B │ │ ├── 000000.png │ │ ├── 000001.png │ │ └── ... │ └── fixed_prompt_a.txt | └── fixed_prompt_b.txt | | ├── test_A │ │ ├── 000000.png │ │ ├── 000001.png │ │ └── ... │ ├── test_B │ │ ├── 000000.png │ │ ├── 000001.png │ │ └── ...
-
The
fixed_prompt_a.txt
andfixed_prompt_b.txt
files contain the fixed caption used for the source and target domains respectively.
-
Initialize the
accelerate
environment with the following command:accelerate config
-
Run the following command to train the model.
export NCCL_P2P_DISABLE=1 accelerate launch --main_process_port 29501 src/train_cyclegan_turbo.py \ --pretrained_model_name_or_path="stabilityai/sd-turbo" \ --output_dir="output/cyclegan_turbo/my_horse2zebra" \ --dataset_folder "data/my_horse2zebra" \ --train_img_prep "resize_286_randomcrop_256x256_hflip" --val_img_prep "no_resize" \ --learning_rate="1e-5" --max_train_steps=25000 \ --train_batch_size=1 --gradient_accumulation_steps=1 \ --report_to "wandb" --tracker_project_name "gparmar_unpaired_h2z_cycle_debug_v2" \ --enable_xformers_memory_efficient_attention --validation_steps 250 \ --lambda_gan 0.5 --lambda_idt 1 --lambda_cycle 1
-
Additional optional flags:
--enable_xformers_memory_efficient_attention
: Enable memory-efficient attention in the model.
-
You can monitor the training progress using the Weights & Biases dashboard.
-
The training script will visualizing the training batch, the training losses, and validation set L2, LPIPS, and FID scores (if specified).
-
The model checkpoints will be saved in the
<output_dir>/checkpoints
directory.
-
You can run inference using the trained model using the following command:
python src/inference_unpaired.py --model_path "output/cyclegan_turbo/my_horse2zebra/checkpoints/model_1001.pkl" \ --input_image "data/my_horse2zebra/test_A/n02381460_20.jpg" \ --prompt "picture of a zebra" --direction "a2b" \ --output_dir "outputs" --image_prep "no_resize"
-
The above command should generate the following output:
Model Input Model Output