-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
executable file
·131 lines (108 loc) · 4.85 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/local/bin/python
from __future__ import division
import numpy as np
from skimage.metrics import structural_similarity
import torch
import torch.nn as nn
class Loss_MRAE(nn.Module):
""" Computes the Mean Relative Absolute Error Loss (PyTorch - Training Loss) """
def __init__(self):
super(Loss_MRAE, self).__init__()
def forward(self, tensor_pred, tensor_gt):
assert tensor_pred.shape == tensor_gt.shape
error = torch.abs((tensor_pred-tensor_gt)/tensor_gt)
mrae = torch.mean(error.reshape(-1))
return mrae
class Loss_SAM(nn.Module):
""" Computes the Spectral Angle Mapper Loss (PyTorch - Training Loss) """
def __init__(self):
super(Loss_SAM, self).__init__()
def forward(self, tensor_pred, tensor_gt):
assert tensor_pred.shape == tensor_gt.shape
EPS = 1e-7
# inner product
dot = torch.sum(tensor_pred * tensor_gt, dim=1).view(-1)
# norm calculations
image = tensor_pred.reshape(-1, tensor_pred.shape[1])
norm_original = torch.norm(image, p=2, dim=1)
target = tensor_gt.reshape(-1, tensor_gt.shape[1])
norm_reconstructed = torch.norm(target, p=2, dim=1)
norm_product = (norm_original.mul(norm_reconstructed)).pow(-1)
argument = dot.mul(norm_product)
# for avoiding arccos(1)
acos = torch.acos(torch.clamp(argument, min=-1+EPS, max=1-EPS))
loss = torch.mean(acos)
if torch.isnan(loss):
raise ValueError(f"Loss is NaN value. Consecutive values - dot: {dot},\
norm original: {norm_original}, norm reconstructed: {norm_reconstructed},\
norm product: {norm_product}, argument: {argument}, acos: {acos},\
loss: {loss}, input: {tensor_pred}, output: {target}")
return loss
class Loss_SID(nn.Module):
""" Computes the Spectral Information Divergence Loss (PyTorch - Training Loss) """
def __init__(self):
super(Loss_SID, self).__init__()
def forward(self, tensor_pred, tensor_gt):
assert tensor_pred.shape == tensor_gt.shape
EPS = 1e-3
output = torch.clamp(tensor_pred, 0, 1)
a1 = output * torch.log10((output + EPS) / (tensor_gt + EPS))
a2 = tensor_gt * torch.log10((tensor_gt + EPS) / (output + EPS))
a1_sum = a1.sum(dim=3).sum(dim=2)
a2_sum = a2.sum(dim=3).sum(dim=2)
sid = torch.mean(torch.abs(a1_sum + a2_sum))
if torch.isnan(sid):
raise ValueError(f"Loss is NaN value. output: {output},\
a1: {a1}, a1_sum: {a1_sum},\
a2: {a2}, a2_sum: {a2_sum},\
sid: {sid}, input: {tensor_pred}, output: {tensor_gt}")
return sid
def mse(img_pred, img_gt):
""" Calculate the mean square error (NumPy - used in test_psnr())"""
error = img_pred - img_gt
mse = np.mean(np.power(error, 2))
return mse
def spectral_angle(a, b):
""" Spectral angle between two arrays (NumPy - used in test_msam()) """
va = a / np.sqrt(a.dot(a))
vb = b / np.sqrt(b.dot(b))
return np.arccos(va.dot(vb))
def spectral_divergence(a, b):
""" Spectral Divergence between two arrays (NumPy - used in test_sid()) """
p = (a / np.sum(a)) + np.spacing(1)
q = (b / np.sum(b)) + np.spacing(1)
return np.sum(p * np.log(p / q) + q * np.log(q / p))
def test_mrae(img_pred, img_gt, relative=True):
""" Calculate the relative Mean Relative Absolute Error (NumPy - Test Error) """
error = img_pred - img_gt
error_relative = error/img_gt if relative else error
mrae = np.mean(np.abs(error_relative))
return mrae
def test_rrmse(img_pred, img_gt, relative=False):
""" Calculate the relative Root Mean Square Error (NumPy - Test Error) """
error = img_pred - img_gt
error_relative = error/img_gt if relative else error
rrmse = np.sqrt(np.mean(np.power(error_relative, 2)))
return rrmse
def test_msam(img_pred, img_gt, max_value=1.0):
""" Calculate the mean spectral angle mapper (NumPy - Test Error) """
img_pred_flat = img_pred.reshape(-1, img_pred.shape[2])
img_gt_flat = img_gt.reshape(-1, img_gt.shape[2])
assert len(img_pred_flat) == len(img_gt_flat)
return np.mean([spectral_angle(img_pred_flat[i]/max_value, img_gt_flat[i]/max_value) for i in range(len(img_pred_flat))])
def test_sid(img_pred, img_gt, max_value=1.0):
""" mean spectral information divergence """
img_pred_flat = img_pred.reshape(-1, img_pred.shape[2])
img_gt_flat = img_gt.reshape(-1, img_gt.shape[2])
assert len(img_pred_flat) == len(img_gt_flat)
return np.mean([spectral_divergence(img_pred_flat[i]/max_value, img_gt_flat[i]/max_value) for i in range(len(img_pred_flat))])
def test_psnr(img_pred, img_gt, max_value=1.0):
""" Calculate the peak signal to noise ratio (NumPy - Test Error) """
return 10 * np.log10(max_value**2 / mse(img_pred, img_gt))
def test_ssim(img_pred, img_gt, max_value=1.0):
""" Calculate the structural simularity index measure (NumPy - Test Error) """
return structural_similarity(img_gt, img_pred, data_range=max_value, channel_axis=True)
def test_ssim_db(img_pred, img_gt, max_value=1.0):
""" Calculate the structural simularity index measure in decibels (NumPy - Test Error) """
ssim = test_ssim(img_pred, img_gt, max_value)
return -10 * np.log10(1- ssim)