-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsklearn_classifier.py
140 lines (117 loc) · 6.76 KB
/
sklearn_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
""" Deprecated: file will be deleted in the future """
import os
import time
import pickle
import numpy as np
import pandas as pd
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from sklearn.model_selection import KFold, StratifiedKFold, train_test_split, cross_validate
from dataset import get_dataloaders_classification
from config import VISUALIZATION_DIR_NAME, MODEL_PATH, LABELS_DICT, TIME_LEFT_DICT
import seaborn as sns
import matplotlib.pyplot as plt
def fit_model(model, X_train, y_train, X_test, y_test, model_name, labels_dict=LABELS_DICT):
start = time.time()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("\n", model_name, ":")
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Time taken:", time.time() - start)
confusion_mat = confusion_matrix(y_test, y_pred)
df_confusion_mat = pd.DataFrame(confusion_mat/np.sum(confusion_mat, axis=1)[:, None], index=[key for key, _ in labels_dict.items()], columns=[key for key, _ in labels_dict.items()])
plt.figure(figsize=(10, 10))
sns.heatmap(df_confusion_mat, annot=True, fmt=".2%")
print(classification_report(y_test, y_pred, target_names=[key for key, _ in labels_dict.items()]))
print(df_confusion_mat)
plt.savefig(os.path.join(VISUALIZATION_DIR_NAME, "confusion_matrix_{}.png".format(model_name)))
plt.show()
plt.close()
def plot_losses(model, filename):
plt.plot(model.loss_curve_)
plt.xlabel("Iterations")
plt.ylabel("Loss")
plt.title("Loss Curve")
plt.show()
plt.savefig(os.path.join(VISUALIZATION_DIR_NAME, filename + "_loss.png"))
def get_data(train_data_loader, valid_data_loader):
X, y = [], []
stride = 10
for hypercubes, labels, _ in train_data_loader:
hypercubes = hypercubes.squeeze().numpy()
bands, height, width = hypercubes.shape
# print(bands, height, width, hypercubes.shape)
hypercubes_sig = hypercubes[:, 0:height:stride, 0:width:stride]
for i in range(0, hypercubes_sig.shape[1]):
for j in range(0, hypercubes_sig.shape[2]):
X.append(hypercubes_sig[:, i, j])
y.append(labels.ravel().numpy())
for hypercubes, labels, _ in valid_data_loader:
hypercubes = hypercubes.squeeze().numpy()
bands, height, width = hypercubes.shape
hypercubes_sig = hypercubes[:, 0:height:stride, 0:width:stride]
for i in range(0, hypercubes_sig.shape[1]):
for j in range(0, hypercubes_sig.shape[2]):
X.append(hypercubes_sig[:, i, j])
y.append(labels.ravel().numpy())
return np.asarray(X), np.asarray(y).ravel()
def get_data_batch(train_data_loader, valid_data_loader):
X, y, y_sublabels, fruits = [], [], [], []
stride = 10
for hypercubes, labels, sublabels, fruit_labels in train_data_loader:
hypercubes = hypercubes.squeeze().numpy()
batch, bands, height, width = hypercubes.shape
for batch_idx in range(0, batch):
X.append(hypercubes[batch_idx].flatten())
y.append(labels[batch_idx].ravel().numpy())
y_sublabels.append(sublabels[batch_idx].ravel().numpy())
fruits.extend(fruit_labels)
for hypercubes, labels, sublabels, fruit_labels in valid_data_loader:
hypercubes = hypercubes.squeeze().numpy()
for batch_idx in range(0, batch):
X.append(hypercubes[batch_idx].flatten())
y.append(labels[batch_idx].ravel().numpy())
y_sublabels.append(sublabels[batch_idx].ravel().numpy())
fruits.extend(fruit_labels)
return np.asarray(X), np.asarray(y).ravel(), np.asarray(y_sublabels).ravel(), fruits
def main():
train_data_loader, valid_data_loader = get_dataloaders_classification()
X, y = get_data(train_data_loader, valid_data_loader)
print("X Shape: {}, y Shape: {}".format(X.shape, y.shape))
skf = StratifiedKFold(n_splits=4, random_state=42, shuffle=True)
scaler = MinMaxScaler()
# mlp = MLPClassifier(hidden_layer_sizes=(200, 150, 100), max_iter=300, activation="relu", solver="adam", alpha=0.0001, verbose=True, n_jobs=1)
logR = LogisticRegression(n_jobs=4, class_weight="balanced", tol=1e-7, penalty="elasticnet", multi_class="multinomial", solver="saga", verbose=True, l1_ratio=0.5)
pipeline = Pipeline([("scaler", scaler), ("logr", logR)])
for k, (train_index, val_index) in enumerate(skf.split(X, y)):
X_train, X_test = X[train_index], X[val_index]
y_train, y_test = y[train_index], y[val_index]
print("Fold: {}, X Train: {}, y Train: {}, X Test: {}, y Test: {}".format(k, X_train.shape, y_train.shape, X_test.shape, y_test.shape))
fit_model(pipeline, X_train, y_train, X_test, y_test, "logR" + str(k), k)
# plot_losses(logR, "LogR_" + str(k))
pickle.dump(pipeline, open(os.path.join(MODEL_PATH, "LogR_" + str(k) + ".pkl"), "wb"))
def main2():
logR = LogisticRegression(n_jobs=4, class_weight="balanced", tol=1e-7, penalty="elasticnet", multi_class="multinomial", solver="saga", verbose=True, l1_ratio=0.5)
svm = SVC(kernel="rbf", class_weight="balanced", probability=True, verbose=True)
sgd = SGDClassifier(loss="log", penalty="elasticnet", alpha=0.0001, l1_ratio=0.5, max_iter=500, tol=1e-7, verbose=True, n_jobs=4, class_weight="balanced")
test_data_loader, valid_data_loader = get_dataloaders_classification(trainset_size=1.0)
X, y, y_sublabels, fruits = get_data_batch(test_data_loader, valid_data_loader)
print("X Shape: {}, y Labels: {}, y SubLabels: {} Fruits: {}".format(X.shape, y.shape, y_sublabels.shape, len(fruits)))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=42, shuffle=True)
print("Labels\t\tX Train: {}, X Test: {}, y Train: {}, y Test: {}".format(X_train.shape, X_test.shape, y_train.shape, y_test.shape))
X_sublabels_train, X_sublabels_test, y_sublabels_train, y_sublabels_test = train_test_split(X, y_sublabels, test_size=0.15, random_state=42, shuffle=True)
print("SubLabels\tX Train: {}, X Test: {}, y Train: {}, y Test: {}".format(X_sublabels_train.shape, X_sublabels_test.shape, y_sublabels_train.shape, y_sublabels_test.shape))
# fit_model(mlp, X_sublabels_train, y_sublabels_train, X_sublabels_test, y_sublabels_test, "MLP", labels_dict=TIME_LEFT_DICT)
fit_model(logR, X_sublabels_train, y_sublabels_train, X_sublabels_test, y_sublabels_test, "LogisticRegression", labels_dict=TIME_LEFT_DICT)
fit_model(svm, X_sublabels_train, y_sublabels_train, X_sublabels_test, y_sublabels_test, "SVM", labels_dict=TIME_LEFT_DICT)
fit_model(sgd, X_sublabels_train, y_sublabels_train, X_sublabels_test, y_sublabels_test, "SGD", labels_dict=TIME_LEFT_DICT)
# fit_model(mlp, X_train, y_train, X_test, y_test, "MLP")
# fit_model(logR, X_train, y_train, X_test, y_test, "LogisticRegression")
fit_model(sgd, X_train, y_train, X_test, y_test, "SGD")
fit_model(svm, X_train, y_train, X_test, y_test, "SVM")
if __name__ == "__main__":
main2()