-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest1.py
205 lines (183 loc) · 9.75 KB
/
test1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/python3
# coding: utf-8
'''
@Time : 2021/3/10 22:13
@Author : Shulu Chen
@FileName: test1.py
@Software: PyCharm
'''
import argparse
import numpy as np
import tensorflow as tf
import time
import pickle
import maddpg.common.tf_util as U
from maddpg.trainer.maddpg import MADDPGAgentTrainer
import tensorflow.contrib.layers as layers
import warnings
warnings.filterwarnings('ignore')
def parse_args():
parser = argparse.ArgumentParser("Reinforcement Learning experiments for multiagent environments")
# Environment
parser.add_argument("--scenario", type=str, default="simple", help="name of the scenario script")
parser.add_argument("--max-episode-len", type=int, default=25, help="maximum episode length")
parser.add_argument("--num-episodes", type=int, default=10000, help="number of episodes")
parser.add_argument("--num-adversaries", type=int, default=0, help="number of adversaries")
parser.add_argument("--good-policy", type=str, default="maddpg", help="policy for good agents")
parser.add_argument("--adv-policy", type=str, default="maddpg", help="policy of adversaries")
# Core training parameters
parser.add_argument("--lr", type=float, default=1e-2, help="learning rate for Adam optimizer")
parser.add_argument("--gamma", type=float, default=0.95, help="discount factor")
parser.add_argument("--batch-size", type=int, default=1024, help="number of episodes to optimize at the same time")
parser.add_argument("--num-units", type=int, default=64, help="number of units in the mlp")
# Checkpointing
parser.add_argument("--exp-name", type=str, default="1", help="name of the experiment")
parser.add_argument("--save-dir", type=str, default="/tmp/policy/", help="directory in which training state and model should be saved")
parser.add_argument("--save-rate", type=int, default=1000, help="save model once every time this many episodes are completed")
parser.add_argument("--load-dir", type=str, default="", help="directory in which training state and model are loaded")
# Evaluation
parser.add_argument("--restore", action="store_true", default=False)
parser.add_argument("--display", action="store_true", default=True)
parser.add_argument("--benchmark", action="store_true", default=False)
parser.add_argument("--benchmark-iters", type=int, default=100000, help="number of iterations run for benchmarking")
parser.add_argument("--benchmark-dir", type=str, default="./benchmark_files/", help="directory where benchmark data is saved")
parser.add_argument("--plots-dir", type=str, default="./learning_curves/", help="directory where plot data is saved")
return parser.parse_args()
def mlp_model(input, num_outputs, scope, reuse=False, num_units=64, rnn_cell=None):
# This model takes as input an observation and returns values of all actions
with tf.variable_scope(scope, reuse=reuse):
out = input
out = layers.fully_connected(out, num_outputs=num_units, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_units, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_outputs, activation_fn=None)
return out
def make_env(scenario_name, arglist, benchmark=False):
from multiagent.environment import MultiAgentEnv
import multiagent.scenarios as scenarios
# load scenario from script
scenario = scenarios.load(scenario_name + ".py").Scenario()
# create world
world = scenario.make_world()
# create multiagent environment
if benchmark:
env = MultiAgentEnv(world, scenario.reset_world, scenario.reward, scenario.observation, scenario.benchmark_data)
else:
env = MultiAgentEnv(world, scenario.reset_world, scenario.reward, scenario.observation)
return env
def get_trainers(env, num_adversaries, obs_shape_n, arglist):
trainers = []
model = mlp_model
trainer = MADDPGAgentTrainer
for i in range(num_adversaries):
trainers.append(trainer(
"agent_%d" % i, model, obs_shape_n, env.action_space, i, arglist,
local_q_func=(arglist.adv_policy=='ddpg')))
for i in range(num_adversaries, env.n):
trainers.append(trainer(
"agent_%d" % i, model, obs_shape_n, env.action_space, i, arglist,
local_q_func=(arglist.good_policy=='ddpg')))
return trainers
def train(arglist):
with U.single_threaded_session():
# Create environment
env = make_env(arglist.scenario, arglist, arglist.benchmark)
# Create agent trainers
obs_shape_n = [env.observation_space[i].shape for i in range(env.n)]
num_adversaries = min(env.n, arglist.num_adversaries)
trainers = get_trainers(env, num_adversaries, obs_shape_n, arglist)
print('Using good policy {} and adv policy {}'.format(arglist.good_policy, arglist.adv_policy))
# Initialize
U.initialize()
# Load previous results, if necessary
if arglist.load_dir == "":
arglist.load_dir = arglist.save_dir
if arglist.display or arglist.restore or arglist.benchmark:
print('Loading previous state...')
U.load_state(arglist.load_dir)
episode_rewards = [0.0] # sum of rewards for all agents
agent_rewards = [[0.0] for _ in range(env.n)] # individual agent reward
final_ep_rewards = [] # sum of rewards for training curve
final_ep_ag_rewards = [] # agent rewards for training curve
agent_info = [[[]]] # placeholder for benchmarking info
saver = tf.train.Saver()
obs_n = env.reset()
episode_step = 0
train_step = 0
t_start = time.time()
print('Starting iterations...')
while True:
# get action
action_n = [agent.action(obs) for agent, obs in zip(trainers,obs_n)]
# environment step
new_obs_n, rew_n, done_n, info_n = env.step(action_n)
episode_step += 1
done = all(done_n)
terminal = (episode_step >= arglist.max_episode_len)
# collect experience
for i, agent in enumerate(trainers):
agent.experience(obs_n[i], action_n[i], rew_n[i], new_obs_n[i], done_n[i], terminal)
obs_n = new_obs_n
for i, rew in enumerate(rew_n):
episode_rewards[-1] += rew
agent_rewards[i][-1] += rew
if done or terminal:
obs_n = env.reset()
episode_step = 0
episode_rewards.append(0)
for a in agent_rewards:
a.append(0)
agent_info.append([[]])
# increment global step counter
train_step += 1
# for benchmarking learned policies
if arglist.benchmark:
for i, info in enumerate(info_n):
agent_info[-1][i].append(info_n['n'])
if train_step > arglist.benchmark_iters and (done or terminal):
file_name = arglist.benchmark_dir + arglist.exp_name + '.pkl'
print('Finished benchmarking, now saving...')
with open(file_name, 'wb') as fp:
pickle.dump(agent_info[:-1], fp)
break
continue
# for displaying learned policies
if arglist.display:
time.sleep(0.1)
env.render()
continue
# update all trainers, if not in display or benchmark mode
loss = None
for agent in trainers:
agent.preupdate()
for agent in trainers:
loss = agent.update(trainers, train_step)
# save model, display training output
if terminal and (len(episode_rewards) % arglist.save_rate == 0):
U.save_state(arglist.save_dir, saver=saver)
# print statement depends on whether or not there are adversaries
if num_adversaries == 0:
print("steps: {}, episodes: {}, mean episode reward: {}, time: {}".format(
train_step, len(episode_rewards), np.mean(episode_rewards[-arglist.save_rate:]), round(time.time()-t_start, 3)))
else:
print("steps: {}, episodes: {}, mean episode reward: {}, agent episode reward: {}, time: {}".format(
train_step, len(episode_rewards), np.mean(episode_rewards[-arglist.save_rate:]),
[np.mean(rew[-arglist.save_rate:]) for rew in agent_rewards], round(time.time()-t_start, 3)))
t_start = time.time()
# Keep track of final episode reward
final_ep_rewards.append(np.mean(episode_rewards[-arglist.save_rate:]))
for rew in agent_rewards:
final_ep_ag_rewards.append(np.mean(rew[-arglist.save_rate:]))
# saves final episode reward for plotting training curve later
# if len(episode_rewards) > arglist.num_episodes:
# rew_file_name = arglist.plots_dir + arglist.exp_name + '_rewards.pkl'
# with open(rew_file_name, 'wb') as fp:
# pickle.dump(final_ep_rewards, fp)
# agrew_file_name = arglist.plots_dir + arglist.exp_name + '_agrewards.pkl'
# with open(agrew_file_name, 'wb') as fp:
# pickle.dump(final_ep_ag_rewards, fp)
# print('...Finished total of {} episodes.'.format(len(episode_rewards)))
# break
if __name__ == '__main__':
arglist = parse_args()
warnings.filterwarnings('ignore')
train(arglist)