-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaftersale4.0(2).py
522 lines (499 loc) · 25 KB
/
aftersale4.0(2).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# -*- coding: utf-8 -*-
"""
作者: Chen Shulu
版本: 4.0
日期: 2019/07/29
项目名称: Aftersale
python环境: 3.7
"""
#import cursor as cursor
import pandas as pd
import itertools
from mpmath import plot
from statsmodels.tsa.arima_model import ARIMA
import warnings
import statsmodels.api as sm
import numpy as np
from datetime import datetime
import psycopg2
import sys
import yaml
from sqlalchemy import create_engine
from LogUtils import *
warnings.filterwarnings("ignore")
setup_logging(default_path = "logging.yaml")
def get_obdid(config_id):
db_lc=config_id['db']
user_name=config_id['user']
pw=config_id['pswd']
host_lc=config_id['host']
port_lc=config_id['port']
conn = psycopg2.connect(database=db_lc, user=user_name,
password=pw, host=host_lc, port=port_lc)
cursor = conn.cursor()
cursor.execute("SELECT distinct (obd_id) FROM wechart_user where obd_id like '817112100153481'")
data = cursor.fetchall()
logging.info("smart-service|get_obdid|"+ str(len(data))+"位用户参与此次保养计算")
return data
###从数据库读车主行驶数据###
def get_customerdata(db_lc,user_name,pw,host_lc,port_lc,obd_id):
try:
conn = psycopg2.connect(database=db_lc, user=user_name,
password=pw, host=host_lc, port=port_lc)
cursor = conn.cursor()
cursor.execute("SELECT id,city,daily_peak_mileages, date_id, mileages, obdid, total_mileages, vehicle_brand"
" FROM mileage_daily_records where obdid = " + obd_id + " ORDER BY date_id")
data = cursor.fetchall()
data = pd.DataFrame(data)
data.columns = ['id', 'city', 'daily_peak_mileages', 'driving_date',
'daily_mileages', 'obd_id', 'total_mileages', 'vehicle_brand']
return data
except Exception as err:
print(err)
##从数据库读零件数据###
def get_partdata(db_lc,user_name,pw,host_lc,port_lc):
try:
conn = psycopg2.connect(database=db_lc, user=user_name,
password=pw, host=host_lc, port=port_lc)
cursor = conn.cursor()
cursor.execute('SELECT * FROM car_parts_service')
data = cursor.fetchall()
logging.info("smart-service|get_customerdata|0|用户零部件数据已导入")
data = pd.DataFrame(data)
data.columns = ['id','visible','insert_time','last_update','descripation','obd_id',
'mtoservise_oil','mtoservise_oil_filter','mtoservise_break_pad','mtoservise_tire',
'mtoservise_air_filtration','mtoservise_air_con_filtration','mtoservise_wiper',
'mtoservise_spark_plug','mtoservise_battery','mtoservise_antifreezing' ]
return data
except Exception as err:
logging.error("smart-service|get_partdata|1|用户数据获取错误此ID无法计算!!!" )
##从数据库读天气数据###
def get_weascoredata(config_gws):
try:
db_lc=config_gws['db']
user_name=config_gws['user']
pw=config_gws['pswd']
host_lc=config_gws['host']
port_lc=config_gws['port']
conn = psycopg2.connect(database=db_lc, user=user_name,
password=pw, host=host_lc, port=port_lc)
cursor = conn.cursor()
cursor.execute('SELECT city,date,dis_rainsnow_score,dis_windhaze_score,'
'dis_btytemp_score,dis_brktemp_score,dis_igttemp_score '
'FROM car_service_city_weather_score')
data = cursor.fetchall()
data = pd.DataFrame(data)
data.columns = ['city','date','dis_rainsnow_score','dis_windhaze_score','dis_btytemp_score',
'dis_brktemp_score','dis_igttemp_score']
logging.info("smart-service|get_customerdata|0|天气数据已导入")
return data
except Exception as err:
logging.error("smart-service|get_customerdata|1|天气数据获取错误此ID无法计算!!!")
###将结果写入数据库###
def write_data_to_sql(db_w,user_w,pswd_w,host_w,port_w,data):
connect = create_engine(
'postgresql+psycopg2://' + user_w + ':' + pswd_w + '@' + host_w + ':' + str(port_w) + '/' + db_w)
pd.io.sql.to_sql(data, 'car_service_result', connect, schema='public', if_exists='append')
connect.dispose()
####计算各部件等效里程(天气&拥堵)###
def count_equivalent(data_path,config_path):
warnings.filterwarnings("ignore")
traffic_table = pd.read_csv(config_path['get_traffic'])
weather_table = get_weascoredata(config_path)
weight_table = pd.read_csv(config_path['get_weight'])
data = data_path
data = pd.merge(data, traffic_table, left_on="city",right_on='city_py', how='left')
data = pd.merge(data, weather_table, left_on=['city_py','driving_date'],
right_on=['city','date'], how='left')
distance_high = data['daily_peak_mileages']
distance_low = data['daily_mileages']-distance_high
for i in range(len(distance_low)):
if distance_low[i] < 0:
distance_low[i] = 0
jam_list = distance_high*data['high_score2']+distance_low*data['low_score2']
data = data.replace(float('NaN'),1)
rainsnow_list = data['daily_mileages'] * data['dis_rainsnow_score']
windhaze_list = data['daily_mileages']*data['dis_windhaze_score']
bty_list = data['daily_mileages']*data['dis_btytemp_score']
brk_list = data['daily_mileages']*data['dis_brktemp_score']
igt_list = data['daily_mileages']*data['dis_igttemp_score']
mile_df = pd.concat([rainsnow_list,windhaze_list,brk_list,
bty_list,igt_list,jam_list],axis =1 )
part_list = []
breaks = 0
tire = 0
airfilter= 0
airconfilter= 0
wiper= 0
ignite= 0
battery= 0
antifreeze= 0
oil= 0
oil_filter= 0
for i in range(6):
breaks = weight_table.ix[0,i+1]*mile_df[i]+breaks
tire= weight_table.ix[1,i+1]*mile_df[i]+tire
airfilter= weight_table.ix[2,i+1]*mile_df[i]+airfilter
airconfilter= weight_table.ix[3,i+1]*mile_df[i]+airconfilter
wiper= weight_table.ix[4,i+1]*mile_df[i]+wiper
ignite= weight_table.ix[5,i+1]*mile_df[i]+ignite
battery= weight_table.ix[7,i+1]*mile_df[i]+battery
antifreeze= weight_table.ix[8,i+1]*mile_df[i]+antifreeze
oil= weight_table.ix[9,i+1]*mile_df[i]+oil
oil_filter= weight_table.ix[10,i+1]*mile_df[i]+oil_filter
breaks = breaks/weight_table.ix[0,7]
tire = tire/weight_table.ix[1,7]
airfilter= airfilter/weight_table.ix[2,7]
print(airfilter)
print('------------------------------------------------------------------------')
airconfilter= airconfilter/weight_table.ix[3,7]
wiper= wiper/weight_table.ix[4,7]
ignite= ignite/weight_table.ix[5,7]
battery= battery/weight_table.ix[7,7]
antifreeze= antifreeze/weight_table.ix[8,7]
oil= oil/weight_table.ix[9,7]
oil_filter=oil_filter/weight_table.ix[10,7]
mile_equivalent = pd.concat([breaks,tire,airfilter,airconfilter,
wiper,ignite,battery,antifreeze,oil,oil_filter],axis =1 )
mile_equivalent.columns= ['breaks','tire','airfilter','airconfilter',
'wiper','ignite','battery','antifreeze','oil','oil_filter']
mile_equivalent.loc['Col_sum'] = mile_equivalent.apply(lambda x: x.sum())
mile_sum = mile_equivalent.ix[-1,]
return mile_sum
###判断函数###
def exam (part,part_mile,start_mile):
for i in range(len(part_mile)):
if (part_mile.mile[len(part_mile)-1] < start_mile):
print("您无需保养",part)
day = 90
break
elif (part_mile.mile[0] >= start_mile):
print("您急需保养", part)
day = 0
break
elif (part_mile.mile[i] >= start_mile):
if (i >= 0 and i <= 30):
print("您需要在", i+1, "天内对", part, "进行保养")
day = i+1
break
elif (i > 30):
print("您无需保养",part)
day = i
break
else :
pass
return day
###接入车主行驶里程时的剩余保养里程###
def count_leftmile(car_type,total_mile,last_maintain,config_lf):
last_miles = []
psa_mile = config_lf['psa_miles']
kia_mile = config_lf['kia_miles']
if (car_type == 'PSA'):#psa
fixmile = psa_mile
for i in range(10):
if (last_maintain[i] > 0): #上次保养时的总里程(有数)
last_miles.append(fixmile[i]-total_mile + last_maintain[i])
else: #上次保养时的总里程(没数)
last_miles.append(fixmile[i]-total_mile%fixmile[i])
elif (car_type == 'KIA'):
fixmile = kia_mile
for i in range(10):
if (last_maintain[i] > 0):
last_miles.append(fixmile[i]-total_mile + last_maintain[i])
else:
last_miles.append(fixmile[i] - total_mile % fixmile[i])
return last_miles
###计算百分比###
def count_percent(car_type,last_mile,equal_miles,part_status,total_miles,config_cp):
psa_mile = config_cp['psa_miles']
kia_mile = config_cp['kia_miles']
perc = []
if (car_type == 'PSA'): # psa
fixmile = psa_mile
for i in range(10):
if (total_miles>=part_status[i]):
perc.append(1-(last_mile[i]-equal_miles[i])/fixmile[i])
else:
perc.append((equal_miles[i]+total_miles-part_status[i])/fixmile[i])
elif (car_type == 'KIA'):
fixmile = kia_mile
for i in range(10):
if (total_miles>=part_status[i]):
perc.append(1-(last_mile[i]-equal_miles[i])/fixmile[i])
else:
perc.append((equal_miles[i]+total_miles-part_status[i])/fixmile[i])
for j in range(10):
if (perc[j]>1):
perc[j]=1
elif (perc[j]<0):
perc[j]=0
perc = pd.DataFrame(perc)
perc = perc.T
perc.columns=['刹车片','轮胎','空气滤清器','空调滤清器','雨刮器','火花塞','电池系统','防冻液','机油','机油滤清器']
return perc
###主函数###
def smart_aftersale(mileage,partstatus,config_yaml):
warnings.filterwarnings("ignore")
part_name = ['mtoservise_oil','mtoservise_oil_filter','mtoservise_break_pad','mtoservise_tire',
'mtoservise_air_filtration','mtoservise_air_con_filtration','mtoservise_wiper',
'mtoservise_spark_plug','mtoservise_battery','mtoservise_antifreezing']
try:
mile_data = mileage
city = mile_data['city'][1]
totalmiles = mileage['total_mileages'][1]
#totalmiles = 10000000
if (totalmiles <= 0):
logging.error("smart-service|smart_aftersale|1|totalmiles <= 0,模型计算失败,此ID无法计算!!!")
carbrand = mileage['vehicle_brand'][1]
print(carbrand)
customer_id = mileage['obd_id'][1]
part_id=partstatus[partstatus.obd_id == customer_id].index.tolist()
if (len(part_id)>0):
part_id = part_id[0]
part_mileage = []
for i in part_name:
part_mileage.append(partstatus[i][part_id])
else:
part_mileage = [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]
print(part_mileage,'part_mileage')
pre_day = 90 #预测天数
start_mileage = count_leftmile(carbrand,totalmiles,part_mileage,config_yaml)
oil_st = start_mileage[0]
oilfilter_st = start_mileage[1]
breaks_st = start_mileage[2]
tire_st = start_mileage[3]
airfilter_st = start_mileage[4]
airconfilter_st = start_mileage[5]
wiper_st = start_mileage[6]
ignition_st = start_mileage[7]
battery_st = start_mileage[8]
antifrezze_st = start_mileage[9]
## 数据清洗,在数据缺失处添加日期,里程数取0##
calendar = pd.read_csv(config_yaml['get_calendar'],encoding = 'gbk')
calendar.columns= ['date_id']
t1 = mile_data['driving_date'][0]
t2 = mile_data['driving_date'][len(mile_data)-1]
t3 = calendar[calendar.date_id==t1].index.tolist()
t4 = calendar[calendar.date_id==t2].index.tolist()
t3 = int(t3[0])
t4 = int(t4[0])
date = calendar.date_id[t3:t4+1]
mile_data = pd.merge(date, mile_data, left_on='date_id',right_on='driving_date' ,how='left')
mile_data = mile_data.fillna(0)
###进行综合评分###
mile_equivalent = count_equivalent(mile_data,config_yaml)
percent_part = count_percent(carbrand,start_mileage,mile_equivalent,part_mileage,totalmiles,config_yaml)#计算各部件保养百分比
left_miles=start_mileage-mile_equivalent
breaksmiled = mile_equivalent[0]
print(breaksmiled.astype(int))
print('-------------------------------------------------------------------------------------------')
tiremiled = mile_equivalent[1]
airfiltermiled = mile_equivalent[2]
airconfiltermiled = mile_equivalent[3]
wipermiled = mile_equivalent[4]
ignitionmiled = mile_equivalent[5]
batterymiled = mile_equivalent[6]
antifrezzemiled = mile_equivalent[7]
oilmiled = mile_equivalent[8]
oilfiltermiled = mile_equivalent[9]
##Arima时序模型预测
warnings.filterwarnings("ignore") # specify to ignore warning messages
#处理数据
start = str(t1)
start_pre = str(t2) #起始预测日期(读取里程的最后一日)
end_pre = str(calendar.date_id[t4+pre_day])
per = len(mile_data)
s = mile_data['daily_mileages'].values.tolist()
train_data = pd.DataFrame(s, columns=['mile'],
index=pd.date_range(start=start,periods=per)) #为时序模型构造日期序列
train_data['mile'] = train_data['mile'].astype('float64')
##Arima模型###
#arima = ARIMA(train_data, order=(7,1,2))
#model = arima.fit(disp=False)
#print(model.aic, model.bic, model.hqic)
##Seasonal Arima模型
d = range(1, 2)
q = range(5, 6)
p = range(5, 8)
# Generate all different combinations of p, q and q triplets
pdq = list(itertools.product(p, d, q))
# Generate all different combinations of seasonal p, q and q triplets
seasonal_pdq = [(1,0,0,52)]
params = []
params_seasonal = []
aics = []
for param in pdq:
for param_seasonal in seasonal_pdq:
try:
mod = sm.tsa.statespace.SARIMAX(train_data,
order=param,
seasonal_order=param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)
results = mod.fit(disp=False).aic
params.append(param)
params_seasonal.append(param_seasonal)
aics.append(results)
print('ARIMA{}x{} - AIC:{}'.format(param, param_seasonal, results))
except:
continue
num = aics.index(min(aics))
param = params[num]
param_seasonal = params_seasonal[num]
mod = sm.tsa.statespace.SARIMAX(train_data,
order=param,
seasonal_order=param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)
results = mod.fit()
#预测
pred = results.predict(start=start_pre, end=end_pre, dynamic= True)
for i in range(len(pred)):
if pred[i] < 0:
pred[i] = 0
pred.index = range(len(pred))
pred = pd.DataFrame(pred)
pred.columns= ['mile']
total_miles_brk = breaksmiled + pred.cumsum()
print(pred.cumsum()/1000000)
print('-------------------------------------------------------------------------------------------')
total_miles_tie = tiremiled + pred.cumsum()
total_miles_aft = airfiltermiled + pred.cumsum()
total_miles_acft = airconfiltermiled + pred.cumsum()
total_miles_wpr = wipermiled + pred.cumsum()
total_miles_igt = ignitionmiled + pred.cumsum()
total_miles_bty = batterymiled + pred.cumsum()
total_miles_atf = antifrezzemiled + pred.cumsum()
total_miles_oil = oilmiled + pred.cumsum()
total_miles_oif = oilfiltermiled + pred.cumsum()
days = []
days.append(exam('刹车片',total_miles_brk,breaks_st))
days.append(exam('轮胎',total_miles_tie,tire_st))
days.append(exam('空气滤清器',total_miles_aft,airfilter_st))
days.append(exam('空调滤清器',total_miles_acft,airconfilter_st))
days.append(exam('雨刮器',total_miles_wpr,wiper_st))
days.append(exam('火花塞',total_miles_igt,ignition_st))
days.append(exam('电池',total_miles_bty,battery_st))
days.append(exam('防冻液',total_miles_atf,antifrezze_st))
days.append(exam('机油',total_miles_oil,oil_st))
days.append(exam('机油滤清器',total_miles_oif,oilfilter_st))
fixdays = pd.DataFrame(days)
fixdays = fixdays.T
fixdays.columns = ['刹车片','轮胎','空气滤清器','空调滤清器','雨刮器','火花塞',
'电池系统','防冻液','机油','机油滤清器']
data_to_sql = ['',str(datetime.now()),str(datetime.now()),'t',int(fixdays['空调滤清器'][0]),
int(fixdays['空气滤清器'][0]),int(fixdays['防冻液'][0]),int(fixdays['电池系统'][0]),
int(fixdays['刹车片'][0]),
int(fixdays['机油'][0]),int(fixdays['机油滤清器'][0]),int(fixdays['火花塞'][0]),
int(fixdays['轮胎'][0]),
int(fixdays['雨刮器'][0]),float(left_miles['airconfilter']),float(left_miles['airfilter']),
float(left_miles['antifreeze']),float(left_miles['battery']),float(left_miles['breaks']),
float(left_miles['oil']),float(left_miles['oil_filter']),float(left_miles['ignite']),
float(left_miles['tire']),float(left_miles['wiper']),str(customer_id),float(percent_part['空调滤清器'][0]),
float(percent_part['空气滤清器'][0]),float(percent_part['防冻液'][0]),float(percent_part['电池系统'][0]),
float(percent_part['刹车片'][0]),float(percent_part['机油'][0]),float(percent_part['机油滤清器'][0]),
float(percent_part['火花塞'][0]),float(percent_part['轮胎'][0]),
float(percent_part['雨刮器'][0]),start_pre]
data_to_sql = pd.DataFrame(data_to_sql)
data_to_sql =data_to_sql.T
data_to_sql.columns=['description','insert_time','last_update_time','visible',
'dtoservise_air_con_filtration','dtoservise_air_filtration',
'dtoservise_antifreezing','dtoservise_battery','dtoservise_break_pad',
'dtoservise_oil','dtoservise_oil_filter','dtoservise_spark_plug',
'dtoservise_tire','dtoservise_wiper','mtoservise_air_con_filtration',
'mtoservise_air_filtration','mtoservise_antifreezing','mtoservise_battery',
'mtoservise_break_pad','mtoservise_oil','mtoservise_oil_filter',
'mtoservise_spark_plug','mtoservise_tire','mtoservise_wiper','obd_id',
'ptoservise_air_con_filtration','ptoservise_antifreezing','ptoservise_battery',
'ptoservise_break_pad','ptoservise_oil','ptoservise_oil_filter',
'ptoservise_spark_plug','ptoservise_tire','ptoservise_wiper',
'ptoservise_air_filtration','date_id']
logging.info("smart-service|smart_aftersale|0|模型计算已完成")
return data_to_sql
except Exception as err:
logging.error("smart-service|smart_aftersale|1|模型计算失败此ID无法计算!!!" )
def get_index(db,user_name,pw,host_lc,port_lc):
conn = psycopg2.connect(database=db, user=user_name,
password=pw, host=host_lc, port=port_lc)
cursor = conn.cursor()
cursor.execute('select max(index) from car_service_result')
max_index = cursor.fetchall()
return max_index
def new_result_data(obd_id):
try:
config = open('./aftersale_dev.yaml',encoding='utf-8')
config = yaml.load(config)
db = config['db']
user = config['user']
pswd = config['pswd']
host = config['host']
port = config['port']
miles_list = get_customerdata(db, user, pswd, host, port,obd_id)
part_status = get_partdata(db, user, pswd, host, port)
result_data = smart_aftersale(miles_list,part_status,config)
to_sql_columns = ['description', 'insert_time', 'last_update_time', 'visible',
'dtoservise_air_con_filtration', 'dtoservise_air_filtration',
'dtoservise_antifreezing', 'dtoservise_battery', 'dtoservise_break_pad',
'dtoservise_oil', 'dtoservise_oil_filter', 'dtoservise_spark_plug',
'dtoservise_tire', 'dtoservise_wiper', 'mtoservise_air_con_filtration',
'mtoservise_air_filtration', 'mtoservise_antifreezing', 'mtoservise_battery',
'mtoservise_break_pad', 'mtoservise_oil', 'mtoservise_oil_filter',
'mtoservise_spark_plug', 'mtoservise_tire', 'mtoservise_wiper', 'obd_id',
'ptoservise_air_con_filtration', 'ptoservise_antifreezing', 'ptoservise_battery',
'ptoservise_break_pad', 'ptoservise_oil', 'ptoservise_oil_filter',
'ptoservise_spark_plug', 'ptoservise_tire', 'ptoservise_wiper',
'ptoservise_air_filtration', 'date_id']
max_index = get_index(config['db'], config['user'], config['pswd'], config['host'], config['port'])
data_result_new = pd.DataFrame(result_data.values, columns=to_sql_columns,
index = [max_index[0][0] + 1])
logging.info("smart-service|new_result_data|0|保养数据已完成")
return data_result_new
except Exception as err:
logging.error("smart-service|new_result_data|1|保养数据获取错误此ID无法计算!!!")
def run(obd_id):
try:
config = open('./aftersale_dev.yaml', encoding='utf-8')
config = yaml.load(config)
db = config['db']
user = config['user']
pswd = config['pswd']
host = config['host']
port = config['port']
a = datetime.now()
result_data = new_result_data(obd_id)
write_data_to_sql(db,user,pswd,host,port,result_data)
b = datetime.now()
print('total run time:', b - a)
logging.info("smart-service|run|0|售后程序已完成")
except Exception as err:
logging.error("smart-service|run|1|售后程序错误此ID无法计算!!!")
logging.info("--------------------------------------------------------------------")
def loop():
config = open('./aftersale_dev.yaml',encoding='utf-8')
config = yaml.load(config)
obd_list = get_obdid(config)
print(obd_list)
config = open('./aftersale_dev.yaml', encoding='utf-8')
config = yaml.load(config)
for obd_id in obd_list:
db = config['db']
user = config['user']
pswd = config['pswd']
host = config['host']
port = config['port']
miles_list = get_customerdata(db, user, pswd, host, port, "'"+obd_id[0]+"'")
try:
if (len(list(miles_list['total_mileages'])) != 0) and (miles_list['total_mileages'][0] is not None):
if miles_list['total_mileages'][0]<=0:
logging.error("smart-service|get_customerdata|1|" + obd_id[0] + "用户数据获取错误此ID无法计算!!!")
continue
else:
logging.info("smart-service|get_customerdata|0|" + obd_id[0] + "用户数据已导入")
run("'"+obd_id[0]+"'")
else:
logging.error("smart-service|get_customerdata|1|" + obd_id[0] + "用户数据获取错误此ID无法计算!!!")
continue
except Exception as err:
logging.error("smart-service|get_customerdata|1|" + obd_id[0] + "用户数据获取错误此ID无法计算!!!")
if __name__ == "__main__":
loop()