-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_database.py
65 lines (48 loc) · 1.61 KB
/
create_database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from langchain_community.document_loaders import PyPDFLoader
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from dotenv import load_dotenv
import os
import shutil
load_dotenv()
GOOGLE_API_KEY = os.environ['GOOGLE_API_KEY']
genai.configure(api_key=GOOGLE_API_KEY)
DATA_PATH = 'data/IFRC FIRST AID GUIDE 2020.pdf'
CHROMA_PATH = 'chroma'
def main():
generate_database()
def generate_database():
documents = load_documents()
chunks = split_text(documents)
save_to_chroma(chunks)
def load_documents():
loader = PyPDFLoader(DATA_PATH)
docs = loader.load()
return docs
def split_text(documents: list[Document]):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 1000,
chunk_overlap = 150,
length_function = len,
add_start_index = True
)
chunks = text_splitter.split_documents(documents)
print(f"Split {len(documents)} documents into {len(chunks)} chunks.")
return chunks
def save_to_chroma(chunks: list[Document]):
if os.path.exists(CHROMA_PATH):
shutil.rmtree(CHROMA_PATH)
embedding_model = GoogleGenerativeAIEmbeddings(
model="models/text-embedding-004",
task_type="RETRIEVAL_DOCUMENT"
)
db = Chroma.from_documents(
chunks, embedding_model, persist_directory=CHROMA_PATH
)
db.persist()
print(f"Saved {len(chunks)} chunks to {CHROMA_PATH}.")
if __name__ == '__main__':
main()