-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathreverb-example-code.h
243 lines (193 loc) · 5.87 KB
/
reverb-example-code.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#include "dsp/delay.h"
#include "./mix-matrix.h"
#include <cstdlib>
double randomInRange(double low, double high) {
// There are better randoms than this, and you should use them instead 😛
double unitRand = rand()/double(RAND_MAX);
return low + unitRand*(high - low);
}
// This is a simple delay class which rounds to a whole number of samples.
using Delay = signalsmith::delay::Delay<double, signalsmith::delay::InterpolatorNearest>;
struct SingleChannelFeedback {
double delayMs = 80;
double decayGain = 0.85;
int delaySamples;
Delay delay;
void configure(double sampleRate) {
delaySamples = delayMs*0.001*sampleRate;
delay.resize(delaySamples + 1);
delay.reset(); // Start with all 0s
}
double process(double input) {
double delayed = delay.read(delaySamples);
double sum = input + delayed*decayGain;
delay.write(sum);
return delayed;
}
};
template<int channels=8>
struct MultiChannelFeedback {
using Array = std::array<double, channels>;
double delayMs = 150;
double decayGain = 0.85;
std::array<int, channels> delaySamples;
std::array<Delay, channels> delays;
void configure(double sampleRate) {
double delaySamplesBase = delayMs*0.001*sampleRate;
for (int c = 0; c < channels; ++c) {
// Distribute delay times exponentially between delayMs and 2*delayMs
double r = c*1.0/channels;
delaySamples[c] = std::pow(2, r)*delaySamplesBase;
delays[c].resize(delaySamples[c] + 1);
delays[c].reset();
}
}
Array process(Array input) {
Array delayed;
for (int c = 0; c < channels; ++c) {
delayed[c] = delays[c].read(delaySamples[c]);
}
for (int c = 0; c < channels; ++c) {
double sum = input[c] + delayed[c]*decayGain;
delays[c].write(sum);
}
return delayed;
}
};
template<int channels=8>
struct MultiChannelMixedFeedback {
using Array = std::array<double, channels>;
double delayMs = 150;
double decayGain = 0.85;
std::array<int, channels> delaySamples;
std::array<Delay, channels> delays;
void configure(double sampleRate) {
double delaySamplesBase = delayMs*0.001*sampleRate;
for (int c = 0; c < channels; ++c) {
double r = c*1.0/channels;
delaySamples[c] = std::pow(2, r)*delaySamplesBase;
delays[c].resize(delaySamples[c] + 1);
delays[c].reset();
}
}
Array process(Array input) {
Array delayed;
for (int c = 0; c < channels; ++c) {
delayed[c] = delays[c].read(delaySamples[c]);
}
// Mix using a Householder matrix
Array mixed = delayed;
Householder<double, channels>::inPlace(mixed.data());
for (int c = 0; c < channels; ++c) {
double sum = input[c] + mixed[c]*decayGain;
delays[c].write(sum);
}
return delayed;
}
};
template<int channels=8>
struct DiffusionStep {
using Array = std::array<double, channels>;
double delayMsRange = 50;
std::array<int, channels> delaySamples;
std::array<Delay, channels> delays;
std::array<bool, channels> flipPolarity;
void configure(double sampleRate) {
double delaySamplesRange = delayMsRange*0.001*sampleRate;
for (int c = 0; c < channels; ++c) {
double rangeLow = delaySamplesRange*c/channels;
double rangeHigh = delaySamplesRange*(c + 1)/channels;
delaySamples[c] = randomInRange(rangeLow, rangeHigh);
delays[c].resize(delaySamples[c] + 1);
delays[c].reset();
flipPolarity[c] = rand()%2;
}
}
Array process(Array input) {
// Delay
Array delayed;
for (int c = 0; c < channels; ++c) {
delays[c].write(input[c]);
delayed[c] = delays[c].read(delaySamples[c]);
}
// Mix with a Hadamard matrix
Array mixed = delayed;
Hadamard<double, channels>::inPlace(mixed.data());
// Flip some polarities
for (int c = 0; c < channels; ++c) {
if (flipPolarity[c]) mixed[c] *= -1;
}
return mixed;
}
};
template<int channels=8, int stepCount=4>
struct DiffuserEqualLengths {
using Array = std::array<double, channels>;
using Step = DiffusionStep<channels>;
std::array<Step, stepCount> steps;
DiffuserEqualLengths(double totalDiffusionMs) {
for (auto &step : steps) {
step.delayMsRange = totalDiffusionMs/stepCount;
}
}
void configure(double sampleRate) {
for (auto &step : steps) step.configure(sampleRate);
}
Array process(Array samples) {
for (auto &step : steps) {
samples = step.process(samples);
}
return samples;
}
};
template<int channels=8, int stepCount=4>
struct DiffuserHalfLengths {
using Array = std::array<double, channels>;
using Step = DiffusionStep<channels>;
std::array<Step, stepCount> steps;
DiffuserHalfLengths(double diffusionMs) {
for (auto &step : steps) {
diffusionMs *= 0.5;
step.delayMsRange = diffusionMs;
}
}
void configure(double sampleRate) {
for (auto &step : steps) step.configure(sampleRate);
}
Array process(Array samples) {
for (auto &step : steps) {
samples = step.process(samples);
}
return samples;
}
};
template<int channels=8, int diffusionSteps=4>
struct BasicReverb {
using Array = std::array<double, channels>;
MultiChannelMixedFeedback<channels> feedback;
DiffuserHalfLengths<channels, diffusionSteps> diffuser;
double dry, wet;
BasicReverb(double roomSizeMs, double rt60, double dry=0, double wet=1) : diffuser(roomSizeMs), dry(dry), wet(wet) {
feedback.delayMs = roomSizeMs;
// How long does our signal take to go around the feedback loop?
double typicalLoopMs = roomSizeMs*1.5;
// How many times will it do that during our RT60 period?
double loopsPerRt60 = rt60/(typicalLoopMs*0.001);
// This tells us how many dB to reduce per loop
double dbPerCycle = -60/loopsPerRt60;
feedback.decayGain = std::pow(10, dbPerCycle*0.05);
}
void configure(double sampleRate) {
feedback.configure(sampleRate);
diffuser.configure(sampleRate);
}
Array process(Array input) {
Array diffuse = diffuser.process(input);
Array longLasting = feedback.process(diffuse);
Array output;
for (int c = 0; c < channels; ++c) {
output[c] = dry*input[c] + wet*longLasting[c];
}
return output;
}
};