-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcnn_train.py
executable file
·215 lines (172 loc) · 6.46 KB
/
cnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 18 13:29:28 2019
@author: anilosmantur
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from pylab import rcParams
rcParams['figure.figsize'] = 10, 5
np.random.seed(42)
n_samples = 30#91
dataNameList = ['attention','meditation','rawValue','delta','theta','lowAlpha','highAlpha',
'lowBeta','highBeta','lowGamma','midGamma','poorSignal']
featureList = ['attention','meditation','rawValue','delta','theta','lowAlpha','highAlpha',
'lowBeta','highBeta','lowGamma','midGamma']
labels = ['focus','relax', 'upWord', 'downWord',
'upColor', 'downColor',
'CyanUP','greenDOWN', 'yellowRIGHT', 'BlackLEFT']#,'blink']
labels = ['relax','upColor','CyanUP']
n_label = len(labels)
trainDataDict = dict()
for data in dataNameList:
trainDataDict[data] = []
testDataDict = dict()
for data in dataNameList:
testDataDict[data] = []
valDataDict = dict()
for data in dataNameList:
valDataDict[data] = []
def load_data(dataDict, label, count):
for data in dataNameList:
dataDict[data].append(np.load('dataset/{}/{}/{}.npy'.format(label,count,data))[:100])
#n_samples = 10
test_n_samples = int(n_samples/2)
test_size = n_label * int(n_samples/2)
train_n_samples = round(n_samples/2)
train_size = n_label * round(n_samples/2)
#nums = np.arange(n_samples)*2
nums = np.arange(n_samples)
trainNums = np.concatenate([nums[:5],nums[10:15],nums[20:25]])#,nums[31:41], nums[51:61],nums[71:81]])
#trainNums = nums[:5]
np.random.shuffle(trainNums)
testNums = np.concatenate([nums[5:10],nums[15:20],nums[25:30]])#,nums[41:51], nums[61:71],nums[81:91]])
#testNums = nums[5:10]
np.random.shuffle(testNums)
valNums = testNums[:int(len(testNums)/2)]
testNums = testNums[int(len(testNums)/2):]
for label in labels:
for i in trainNums:
load_data(trainDataDict,label, i)
for label in labels:
for i in testNums:
load_data(testDataDict,label, i)
for label in labels:
for i in valNums:
load_data(valDataDict,label, i)
for data in dataNameList:
trainDataDict[data] = np.array(trainDataDict[data])
for data in dataNameList:
testDataDict[data] = np.array(testDataDict[data])
for data in dataNameList:
valDataDict[data] = np.array(valDataDict[data])
#connect features
trainData = []
for data in featureList:
trainData.append(trainDataDict[data])
trainData = np.array(trainData).transpose(1,0,2)
testData = []
for data in featureList:
testData.append(testDataDict[data])
testData = np.array(testData).transpose(1,0,2)
valData = []
for data in featureList:
valData.append(valDataDict[data])
valData = np.array(valData).transpose(1,0,2)
trainLabels = []
for i in range(n_label):
trainLabels.append(np.ones(int(n_samples/2))*i )#,np.ones(15)*2])
trainLabels = np.concatenate(trainLabels)
train_indexes = np.arange(len(trainLabels))
np.random.shuffle(train_indexes)
valLabels = []
for i in range(n_label):
valLabels.append(np.ones(len(valNums))*i )#,np.ones(15)*2])
valLabels = np.concatenate(valLabels)
val_indexes = np.arange(len(valLabels))
np.random.shuffle(val_indexes)
testLabels = []
for i in range(n_label):
testLabels.append(np.ones(len(testNums))*i )#,np.ones(15)*2])
testLabels = np.concatenate(testLabels)
test_indexes = np.arange(len(testLabels))
np.random.shuffle(test_indexes)
x_train = trainData[train_indexes]
x_val = valData[val_indexes]
x_test = testData[test_indexes]
y_train = trainLabels[train_indexes]
y_val = valLabels[val_indexes]
y_test = testLabels[test_indexes]
import keras
from keras.callbacks import ModelCheckpoint
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras import backend as K
batch_size = 4
num_classes = n_label
epochs = 50
# input image dimensions
img_rows, img_cols = 10, 10
channel = 11
# the data, split between train and test sets
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_val = x_val.astype('float32')
## normalization needed
scaler = MinMaxScaler()
print(scaler.fit(x_train.reshape(-1, 1100)))
x_train = scaler.transform(x_train.reshape(-1, 1100))
x_test = scaler.transform(x_test.reshape(-1, 1100))
x_val = scaler.transform(x_val.reshape(-1, 1100))
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], channel, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], channel, img_rows, img_cols)
x_val = x_val.reshape(x_val.shape[0], channel, img_rows, img_cols)
input_shape = (channel, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, channel)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channel)
x_val = x_val.reshape(x_val.shape[0], img_rows, img_cols, channel)
input_shape = (img_rows, img_cols, channel)
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print(x_val.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
y_val = keras.utils.to_categorical(y_val, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(BatchNormalization())
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
checkp = ModelCheckpoint('models/best_model.hdf5', monitor='val_loss', save_best_only=True)
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_val, y_val),
callbacks=[checkp])
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss: {:.3f}'.format(score[0]))
print('Test accuracy: {:6.3f}%'.format(score[1]*100))
model.load_weights('models/best_model.hdf5')
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss: {:.3f}'.format(score[0]))
print('Test accuracy: {:6.3f}%'.format(score[1]*100))