-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiments.py
336 lines (246 loc) · 9.78 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
import glob
from os import path
import os
import subprocess
import sys
np.seterr(all='raise')
def metis_partition_file_converter(inp, out):
import sys
#inp = sys.argv[1]
#out = sys.argv[2]
partitions = {}
def add(el, idx):
if idx not in partitions:
partitions[idx] = [el]
else:
partitions[idx].append(el)
with open(inp, "r+") as f:
el = 0
for line in f:
idx = int(line.strip())
add(el, idx)
el += 1
with open(out, "w+") as f:
idxs = list(partitions.keys())
idxs.sort()
assert(idxs[0] <= idxs[-1])
for ix in idxs:
f.write(" ".join([str(e) for e in partitions[ix]]) + "\n")
import numpy as np
from sklearn.preprocessing import normalize
from sklearn.metrics import pairwise_distances
import scipy.sparse as sparse
def test_convergence(matrix, threshold):
#np.set_printoptions(threshold=np.inf)
#n = len(matrix)
n = matrix.shape[0]
#assert(len(matrix[0]) == n)
#e = sum([sum(row) for row in matrix])
e = matrix.sum()
print("n;", n)
print("e;", e)
#matrix = np.array(matrix)
#colsums = [sum([matrix[i][j] for j in range(n)]) for i in range(n)]
colsums = matrix.sum(axis=1)
#uniform = np.array([colsums[i]/e for i in range(n)], dtype=np.float64)
uniform = np.zeros(shape=(n,))
#print(colsums)
for i in range(n):
uniform[i] = colsums[i]/e
#uniform = np.array([1] + [0 for _ in range(n - 1)]) #np.array([sum([e for e in matrix[i]])/e for i in range(n)])
assert(0.99 <= uniform.sum() <= 1.01)
#scipy matmul numpy : A.dot(v)
walk = np.array([1.] + [0 for _ in range(n - 1)], np.float64) #Seed?
#walk = np.array([1./n for _ in range(n)])
#sums = [sum(matrix[i]) for i in range(n)]
sums = matrix.sum(axis=0)
assert((sums != 0).any())
for s in sums:
pass #assert(s > 0)
#No longer sparse ?
for i in range(n):
for j in range(n):
if matrix[i, j] != 0:
matrix[i, j] = matrix[i, j] / int(sums[:, j])
#matrix_with_drift = [[e/sums[j] for i, e in enumerate(subl)] for j, subl in enumerate(matrix)]
#assert(len(matrix) == n)
#assert(len(matrix[0]) == n)
for i in range(n):
matrix[i, i] = matrix[i, :].sum()
assert(matrix[i, i] > 0)
cnt = matrix[i, :].sum()
matrix[i, :] /= cnt
assert(0.99 <= matrix[i, :].sum() <= 1.01)
#matrix = np.array(matrix, np.float64)
matrix = sparse.coo_matrix(matrix)
dist = np.linalg.norm(walk - uniform, 1)
#dist = np.sum(pairwise_distances(walk.reshape(-1, 1), uniform.reshape(-1, 1))) / n
steps = 0
while dist > threshold and steps < 10000: #and steps < len(matrix):
walk = matrix.T.dot(walk.T)
assert(0.99 < sum(walk) < 1.01)
assert(0.99 < sum(uniform) < 1.01)
steps += 1
dist = np.linalg.norm(walk - uniform, 1)
"""
try:
s_matrix = sparse.coo_matrix(matrix)
eigenvecs, _ = sparse.linalg.eigs(s_matrix, k=2)
print("eigenvecs sample;", eigenvecs[:5])
print("first two eigvenvals;", eigenvecs[eigenvecs.argsort()[-2:][::-1]])
except:
print("Eigenvalue calculation failed")
"""
print("dist;", dist)
return steps
import numpy as np
def graph_and_cut_to_numpy(gf, cf):
graph = {}
with open(gf, "r") as f:
first_row = f.readline().strip("\n").split(" ")
while [] in first_row:
first_row.remove([])
n, e = [int(e) for e in first_row]
for i, row in enumerate(f.readlines()):
graph[i + 1] = []
for v in row.strip("\n").split(" "):
if v == "":
continue
assert(int(v))
graph[i + 1].append(int(v))
try:
graph[v].append(int(i + 1))
except KeyError:
graph[v] = [int(i + 1)]
clusters = []
#TOFIX: clusters are 0 index
with open(cf, "r") as f:
n_counter = 0
e_counter = 0
for i, row in enumerate(f.readlines()):
clusters.append([int(e) + 1 for e in row.strip("\n").split(" ") if e != ""])
#print(clusters[-1])
n_counter += 1
e_counter += len(clusters[-1])
return graph, clusters
def test(graph_f, cut_f):
graph, cuts = graph_and_cut_to_numpy(graph_f, cut_f)
#graph, cuts = graph_and_cut_to_numpy("graphs/whitaker3.graph", "old_results/whitaker3.graph.part.94.chaco")
subgs = []
for clidx, cut in enumerate(cuts):
if len(cut) == 1:
print("Singleton, continue")
continue
v_set = set()
for el in cut:
v_set.add(int(el))
#print(v_set)
n = len(v_set)
subg = {k:[] for k in cut}
#print("first element in cut", cut[0])
for k in graph:
for v in graph[k]:
if v in v_set and k in v_set:
subg[k].append(v)
rekey_dict = {v:i for i, v in enumerate(sorted(list(subg.keys())))}
rekey_reverse = {i:v for i, v in enumerate(sorted(list(subg.keys())))}
success = True
#new_subg = [[0 for _ in range(n)] for _ in range(n)]
new_subg = sparse.dok_matrix((n, n))
for k in subg:
if len(subg[k]) == 0:
print("WARNING - disconnected cluster;", clidx, "number of nodes in subgraph is;", len(cut))
success = False
break
for v in subg[k]:
#new_subg[rekey_dict[k]][rekey_dict[v]] = 1
#new_subg[rekey_dict[v]][rekey_dict[k]] = 1
new_subg[rekey_dict[k], rekey_dict[v]] = 1
new_subg[rekey_dict[v], rekey_dict[k]] = 1
if not success:
continue
steps = test_convergence(new_subg, 0.01)
print("Cluster", clidx, "of size: ", n, "took n steps to converge;", steps)
import math
print("steps/ log2 nodes;", steps/math.log2(n))
#Scipy and numpy can't calculate eigenvalues quick
n = len(graph)
if True: #n <= 5000
trivial_subg = sparse.dok_matrix((n, n))
for i, k in enumerate(graph):
for j, _ in enumerate(graph[k]):
#trivial_subg[i][j] = 1
trivial_subg[i, j] = 1
steps = test_convergence(trivial_subg, 0.01)
print("Whole graph took n steps to converge:", steps)
import math
print("steps/ log2 nodes", steps/math.log2(n))
import glob
def run_decomp(graph_files):
for graph in graph_files:
print("decomp on;", graph)
print(graph)
#run decomposition on all graphs with time limit
out_path = graph + ".out"
# get_ipython().system('time -p timeout 15m ./a.out --G_phi=0.01 --H_phi=0.4 --vol=1 --h_ratio=0. -f $graph | tee "$out_path"')
#get_ipython().system('time -p timeout 15m ./a.out --G_phi=0.01 --H_phi=0.4 --vol=1 --h_ratio=0. -f $graph')
os.system('time -p timeout 15m ./a.out -S --G_phi=0.01 --H_phi=0.4 --vol=1 --h_ratio=0. -f ' + graph + " | tee " + out_path)
#TODO return code
if not glob.glob(graph + "cut.txt"):
print("decomp on", graph, "did not finish in time")
continue
#how many clusters, k, did we get?
with open(out_path) as f:
lns = f.readlines()
cluster_line = next(l for l in lns if "n clusters" in l)
cluster_line.strip("\n")
n_clusters = int(cluster_line.split(";")[1])
if n_clusters <= 1:
print("No cut found, continue")
continue
print("n clusters found", n_clusters)
#run metis on k
metis_stdio_path = graph + ".out.metis"
#TOFIX: why does this freeze?
#get_ipython().system('timeout 10s /usr/bin/gpmetis -ufactor=1000 $graph $n_clusters -contig > $metis_stdio_path')
#get_ipython().system('timeout 10s /usr/bin/gpmetis -ufactor=1000 $graph $n_clusters -contig')
#subprocess.run('timeout 5s /usr/bin/gpmetis -ufactor=1000 ' + graph + ' ' + str(n_clusters) + '-contig', shell=True) #stdout=subprocess.std, stderr=subprocess.PIPE)
#subprocess.Popen('timeout 5s /usr/bin/gpmetis -ufactor=1000 ' + graph + ' ' + str(n_clusters) + '-contig', shell=True)#.communicate()[0]
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
#metis_file = graph + ".out.metis"
#Metis does not always return k parts
#metis_file = graph + ".part." + str(n_clusters)
#metis_file = glob.glob(graph + ".part.*")[0]
decomp_file = graph + "cut.txt"
print("Converting metis file")
#metis_partition_file_converter(metis_file, metis_file)
print("Conversion done")
#rw_graph = graph + ".row_whole"
#rw_file_ours = graph + ".rw_ours"
#rw_file_metis = graph + ".rw_metis"
#TOFIX This should be saving to file!
print("decomp ours")
test(graph, decomp_file)
#print("decomp metis")
#test(graph, metis_file)
bname = os.path.basename(graph).split(".")[0]
#get_ipython().system('mkdir -p results/"$bname"')
os.system('mkdir -p results/"$bname"')
for f in glob.glob("".join(graph.split(".")[:-1]) + "*"):
if f != graph:
#get_ipython().system('mv $f results/"$bname"/')
os.system('mv $f results/"$bname"/')
import glob
#g1s = list(glob.glob("synthetic/*"))
#run_decomp(g1s)
blacklist = ["graphs/144.graph"]
g2s = list(glob.glob("graphs/*"))
g2s.sort()
g2s = [s for s in g2s if s not in blacklist]
run_decomp(g2s)
# In[ ]: