-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandom_generator.cpp
324 lines (250 loc) · 7.78 KB
/
random_generator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/* random_generator.cpp
* Various Random Number Generators aiding the model
* Andre Zapico
*/
#include <iostream> // std out
#include <random> // random number generators
#include <armadillo> // fast linear algebra
#include <cmath> // math
#include <algorithm> // random device
#include "px_blgrm_helper.h"
using namespace std;
using namespace arma;
vec n_unif(int n){
// generate p uniform(0,1) distributed realizations
// requires: out a arma::vec of length n
random_device rd;
default_random_engine gen(rd());
uniform_real_distribution<double> unif(0.0, 1.0);
vec out; out.zeros(n);
for(int i = 0; i < n; ++i){
out(i) = unif(gen);
}
return out;
}
vec n_unif_int_a_b(int n, int a, int b){
random_device rd;
default_random_engine gen(rd());
uniform_int_distribution<int> int_unif(a, b);
vec out; out.zeros(n);
for(int i = 0; i < n; ++i){
out(i) = int_unif(gen);
cout << int_unif(gen);
}
return out;
}
vec n_norm(int n){
// generate n standard normally distributed random variables
// requires: out a arma::vec of length n
random_device rd;
default_random_engine gen(rd());
normal_distribution<double> norm(0.0,1.0);
vec out(n);
for(int i = 0; i < n; ++i){
out(i) = norm(gen);
}
return out;
}
vec n_norm_musig(int n, double mu, double sigma){
// generate n standard normally distributed random variables
// requires: out a arma::vec of length n
random_device rd;
default_random_engine gen(rd());
normal_distribution<double> norm(mu, sigma);
vec out(n);
for(int i = 0; i < n; ++i){
out(i) = norm(gen);
}
return out;
}
mat n_norm_mat(int n){
mat out; out.zeros(n, n);
for(int i = 0; i < n; ++i){
for(int j = 0; j < n; ++j){
out(i , j) = n_norm(1)(0);
}
}
return out;
}
vec mv_norm(vec mu, mat Sigma){
// return n x d matrix of random vectors with mean mu
// and covariance sigma
// requires: mu is n x d matrix of means
// Sigma d x d positive semi-definite symmetrix matrix
int n = mu.n_elem;
vec out(n);
out = mu + chol(Sigma) * n_norm(n);
//out = mu + cholesky_decomp(Sigma) * n_norm(n);
return out;
}
void rpois(vec &out, vec mu){
// this function need be edited
// generate poisson distributed RV
// requies: out a arma::vec of length n
random_device rd;
default_random_engine gen(rd());
int n = mu.n_elem;
for(int i = 0; i < n; ++i){
poisson_distribution<int> rpois(mu(i));
out(i) = rpois(gen);
}
}
vec n_inv_gaussian(int n, double mu, double lambda){
// return n inverse gaussian distributed RV
// with specified parameters
vec out(n);
double y, x;
vec z; z.zeros(1);
vec u; u.zeros(1);
for(int i = 0; i < n; ++i){
z = n_norm(1); // get 1 norm(0,1) distributed RV
y = z(0) * z(0);
x = mu + 0.5 * mu * mu * y / lambda - 0.5 * (mu / lambda) *
sqrt(4 * mu * lambda * y + mu * mu * y * y);
u = n_unif(1); // get 1 runif(0,1) distributed RV
if(u(0) <= (mu / (mu + x))){
out(i) = x;
}else{
out(i) = mu * mu / x;
}
}
return out;
}
vec n_gamma(int n, double shape, double scale){
// n draws from gamma_distribution with
// given shape and scale
vec out; out.zeros(n); // init and allocate space
random_device rd;
default_random_engine gen(rd());
gamma_distribution<double> rgamma(shape, scale);
for(int i = 0; i < n; ++i){
out(i) = rgamma(gen);
}
return out;
}
vec n_exp(int n, double lambda){
vec out; out.zeros(n);
random_device rd;
default_random_engine gen(rd());
exponential_distribution<double> rexp(lambda);
for(int i = 0; i < n; ++i){out(i) = rexp(gen);}
return out;
}
mat ARWM_B(int Niter, int burnin, int n_samples, vec beta_init,
mat B, int i, double sigma, mat lam_l, mat lam_s,
int range, int range_0, mat VV0, int R, int V, int n){
// A general adaptive random walk metropolis that does
int p = beta_init.n_elem; // number of predictors
mat C(p,p, fill::eye); // pxp diagonal matrix, 1's along diag
// cout << C;
mat K = chol(C).t(); // cholesky decomp, transpose
vec mu; mu.zeros(p); // vector of p zeros
vec bmu(p);
mat out; out.zeros(p, burnin + Niter); // out variables, beta + sig
// so we can take n samples from this distribution
mat beta_out; beta_out.zeros(p, n_samples);
vec to_sample; to_sample.zeros(n_samples);
// addaptive params
int cptUpdate = 0;
int LUpdate = 10000; // turn to 500
double lsig = -1.0;
vec beta; beta = beta_init; // init beta to 0
vec beta_prop;
double lpi = log_pdf_B(beta, B, i - 1, sigma, lam_l, lam_s,
range, range_0, VV0, R, V, n);
double lpi_prop;
double Acc;
double runif;
double u;
for(int j = 1; j < Niter + burnin; ++j){
beta_prop = beta + exp(lsig) * (K * n_norm(p)); // adaptive step size
lpi_prop = log_pdf_B(beta_prop, B, i - 1, sigma, lam_l,
lam_s, range, range_0, VV0, R, V, n);
Acc = min(1.0, exp(lpi_prop - lpi)); // log posterior ratio
runif = n_unif(1)(0);
if(runif <= Acc){
beta = beta_prop;
lpi = lpi_prop;
}
// update adaptive parameters
lsig = lsig + (1/pow(j, 0.7)) * (Acc - 0.4); // step size
mu = mu + 1 / (j * (beta - mu));
bmu = (beta - mu);
C = C + 1 / (j * (bmu * bmu.t() - C)); // covariance
if(cptUpdate == LUpdate){
// sometimes bugs out, but you can re-run it
K = chol(C).t();
cptUpdate = 0;
}else{
cptUpdate = cptUpdate + 1;
}
out.col(j) = beta;
}
// remove the burnin
out = out.cols(burnin + 1, out.n_cols - 1);
for(int j = 0; j < n_samples; ++j){
u = n_unif(1)(0);
beta_out.col(j) = out.col(floor(u * out.n_cols));
}
// returns sample of n_samples from this posterior
return beta_out;
}
mat ARWM_Psi(int Niter, int burnin, int n_samples, vec beta_init, int n,
mat D, double sigma_0, mat BMM, double v_a, double v_b){
// A general adaptive random walk metropolis
int p = beta_init.n_elem; // number of predictors
mat C(p,p, fill::eye); // pxp diagonal matrix, 1's along diag
mat K = chol(C).t(); // cholesky decomp, transpose
vec mu; mu.zeros(p); // vector of p zeros
vec bmu(p);
mat out; out.zeros(p, burnin + Niter); // out variables, beta + sig
// so we can take n samples from this distribution
mat beta_out; beta_out.zeros(p, n_samples);
vec to_sample; to_sample.zeros(n_samples);
// addaptive params
int cptUpdate = 0;
int LUpdate = 500; // turn to 500
double lsig = -1.0;
vec beta; beta = beta_init; // init beta to 0
vec beta_prop;
double lpi = log_pdf_Psi(beta, n, D, sigma_0, BMM, v_a, v_b);
double lpi_prop;
double Acc;
double runif;
double u;
for(int j = 1; j < Niter + burnin; ++j){
beta_prop = beta + exp(lsig) * (K * n_norm(p) * .25); // adaptive step size
for(int k = 0; k < beta_prop.n_elem; ++k){
if(beta_prop(k) < 0){beta_prop(k) = -1 * beta_prop(k);}
}
lpi_prop = log_pdf_Psi(beta_prop, n, D, sigma_0, BMM, v_a, v_b);
Acc = min(1.0, exp(lpi_prop - lpi)); // log posterior ratio
runif = n_unif(1)(0);
if(runif <= Acc){
beta = beta_prop;
cout << beta << "\n";
lpi = lpi_prop;
}
// update adaptive parameters
lsig = lsig + (1/pow(j, 0.7)) * (Acc - 0.4); // step size
mu = mu + 1 / (j * (beta - mu));
bmu = (beta - mu);
C = C + 1 / (j * (bmu * bmu.t() - C)); // covariance
if(cptUpdate == LUpdate){
// sometimes bugs out, but you can re-run it
K = chol(C).t();
cptUpdate = 0;
}else{
cptUpdate = cptUpdate + 1;
}
out.col(j) = beta;
}
// remove the burnin
out = out.cols(burnin + 1, out.n_cols - 1);
for(int j = 0; j < n_samples; ++j){
u = n_unif(1)(0);
beta_out.col(j) = out.col(floor(u * out.n_cols));
}
// returns sample of n_samples from this posterior
return beta_out;
}