-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcoordinates.py
124 lines (106 loc) · 4.33 KB
/
coordinates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy as np
#Coordinate conversions (From https://github.com/commaai/laika)
a = 6378137
b = 6356752.3142
esq = 6.69437999014 * 0.001
e1sq = 6.73949674228 * 0.001
def geodetic2ecef(geodetic, radians=False):
geodetic = np.array(geodetic)
input_shape = geodetic.shape
geodetic = np.atleast_2d(geodetic)
ratio = 1.0 if radians else (np.pi / 180.0)
lat = ratio*geodetic[:,0]
lon = ratio*geodetic[:,1]
alt = geodetic[:,2]
xi = np.sqrt(1 - esq * np.sin(lat)**2)
x = (a / xi + alt) * np.cos(lat) * np.cos(lon)
y = (a / xi + alt) * np.cos(lat) * np.sin(lon)
z = (a / xi * (1 - esq) + alt) * np.sin(lat)
ecef = np.array([x, y, z]).T
return ecef.reshape(input_shape)
def ecef2geodetic(ecef, radians=False):
"""
Convert ECEF coordinates to geodetic using ferrari's method
"""
# Save shape and export column
ecef = np.atleast_1d(ecef)
input_shape = ecef.shape
ecef = np.atleast_2d(ecef)
x, y, z = ecef[:, 0], ecef[:, 1], ecef[:, 2]
ratio = 1.0 if radians else (180.0 / np.pi)
# Conver from ECEF to geodetic using Ferrari's methods
# https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#Ferrari.27s_solution
r = np.sqrt(x * x + y * y)
Esq = a * a - b * b
F = 54 * b * b * z * z
G = r * r + (1 - esq) * z * z - esq * Esq
C = (esq * esq * F * r * r) / (pow(G, 3))
S = np.cbrt(1 + C + np.sqrt(C * C + 2 * C))
P = F / (3 * pow((S + 1 / S + 1), 2) * G * G)
Q = np.sqrt(1 + 2 * esq * esq * P)
r_0 = -(P * esq * r) / (1 + Q) + np.sqrt(0.5 * a * a*(1 + 1.0 / Q) - \
P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r)
U = np.sqrt(pow((r - esq * r_0), 2) + z * z)
V = np.sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z)
Z_0 = b * b * z / (a * V)
h = U * (1 - b * b / (a * V))
lat = ratio*np.arctan((z + e1sq * Z_0) / r)
lon = ratio*np.arctan2(y, x)
# stack the new columns and return to the original shape
geodetic = np.column_stack((lat, lon, h))
return geodetic.reshape(input_shape)
class LocalCoord(object):
"""
Allows conversions to local frames. In this case NED.
That is: North East Down from the start position in
meters.
"""
def __init__(self, init_geodetic, init_ecef):
self.init_ecef = init_ecef
lat, lon, _ = (np.pi/180)*np.array(init_geodetic)
self.ned2ecef_matrix = np.array([[-np.sin(lat)*np.cos(lon), -np.sin(lon), -np.cos(lat)*np.cos(lon)],
[-np.sin(lat)*np.sin(lon), np.cos(lon), -np.cos(lat)*np.sin(lon)],
[np.cos(lat), 0, -np.sin(lat)]])
self.ecef2ned_matrix = self.ned2ecef_matrix.T
@classmethod
def from_geodetic(cls, init_geodetic):
init_ecef = geodetic2ecef(init_geodetic)
return LocalCoord(init_geodetic, init_ecef)
@classmethod
def from_ecef(cls, init_ecef):
init_geodetic = ecef2geodetic(init_ecef)
return LocalCoord(init_geodetic, init_ecef)
def ecef2ned(self, ecef):
ecef = np.array(ecef)
# Convert to column vectors for calculation before returning in the same shape as the input
input_shape = ecef.shape
ecef = np.atleast_2d(ecef)
return_vect = np.matmul(self.ecef2ned_matrix, (ecef.T - np.reshape(self.init_ecef, [3, -1])))
return np.reshape(return_vect, input_shape)
def ecef2nedv(self, ecef):
ecef = np.array(ecef)
# Convert to column vectors for calculation before returning in the same shape as the input
input_shape = ecef.shape
ecef = np.atleast_2d(ecef)
return_vect = np.matmul(self.ecef2ned_matrix, ecef.T)
return np.reshape(return_vect, input_shape)
def ned2ecef(self, ned):
ned = np.array(ned)
# Convert to column vectors for calculation before returning in the same shape as the input
input_shape = ned.shape
ned = np.atleast_2d(ned)
return_vect = np.matmul(self.ned2ecef_matrix, ned.T) + np.reshape(self.init_ecef, [3, -1])
return np.reshape(return_vect, input_shape)
def ned2ecefv(self, ned):
ned = np.array(ned)
# Convert to column vectors for calculation before returning in the same shape as the input
input_shape = ned.shape
ned = np.atleast_2d(ned)
return_vect = np.matmul(self.ned2ecef_matrix, ned.T)
return np.reshape(return_vect, input_shape)
def geodetic2ned(self, geodetic):
ecef = geodetic2ecef(geodetic)
return self.ecef2ned(ecef)
def ned2geodetic(self, ned):
ecef = self.ned2ecef(ned)
return ecef2geodetic(ecef)