-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathresnet_classifier.py
248 lines (218 loc) · 7.83 KB
/
resnet_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import warnings
from argparse import ArgumentParser
from pathlib import Path
warnings.filterwarnings("ignore")
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
from torch.optim import SGD, Adam
from torch.utils.data import DataLoader
from torchmetrics import Accuracy
from torchvision import transforms
from torchvision.datasets import ImageFolder
# Here we define a new class to turn the ResNet model that we want to use as a feature extractor
# into a pytorch-lightning module so that we can take advantage of lightning's Trainer object.
# We aim to make it a little more general by allowing users to define the number of prediction classes.
class ResNetClassifier(pl.LightningModule):
resnets = {
18: models.resnet18,
34: models.resnet34,
50: models.resnet50,
101: models.resnet101,
152: models.resnet152,
}
optimizers = {"adam": Adam, "sgd": SGD}
def __init__(
self,
num_classes,
resnet_version,
train_path,
val_path,
test_path=None,
optimizer="adam",
lr=1e-3,
batch_size=16,
transfer=True,
tune_fc_only=True,
):
super().__init__()
self.num_classes = num_classes
self.train_path = train_path
self.val_path = val_path
self.test_path = test_path
self.lr = lr
self.batch_size = batch_size
self.optimizer = self.optimizers[optimizer]
# instantiate loss criterion
self.loss_fn = (
nn.BCEWithLogitsLoss() if num_classes == 1 else nn.CrossEntropyLoss()
)
# create accuracy metric
self.acc = Accuracy(
task="binary" if num_classes == 1 else "multiclass", num_classes=num_classes
)
# Using a pretrained ResNet backbone
self.resnet_model = self.resnets[resnet_version](pretrained=transfer)
# Replace old FC layer with Identity so we can train our own
linear_size = list(self.resnet_model.children())[-1].in_features
# replace final layer for fine tuning
self.resnet_model.fc = nn.Linear(linear_size, num_classes)
if tune_fc_only: # option to only tune the fully-connected layers
for child in list(self.resnet_model.children())[:-1]:
for param in child.parameters():
param.requires_grad = False
def forward(self, X):
return self.resnet_model(X)
def configure_optimizers(self):
return self.optimizer(self.parameters(), lr=self.lr)
def _step(self, batch):
x, y = batch
preds = self(x)
if self.num_classes == 1:
preds = preds.flatten()
y = y.float()
loss = self.loss_fn(preds, y)
acc = self.acc(preds, y)
return loss, acc
def _dataloader(self, data_path, shuffle=False):
# values here are specific to pneumonia dataset and should be updated for custom data
transform = transforms.Compose(
[
transforms.Resize((500, 500)),
transforms.ToTensor(),
transforms.Normalize((0.48232,), (0.23051,)),
]
)
img_folder = ImageFolder(data_path, transform=transform)
return DataLoader(img_folder, batch_size=self.batch_size, shuffle=shuffle)
def train_dataloader(self):
return self._dataloader(self.train_path, shuffle=True)
def training_step(self, batch, batch_idx):
loss, acc = self._step(batch)
# perform logging
self.log(
"train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True
)
self.log(
"train_acc", acc, on_step=True, on_epoch=True, prog_bar=True, logger=True
)
return loss
def val_dataloader(self):
return self._dataloader(self.val_path)
def validation_step(self, batch, batch_idx):
loss, acc = self._step(batch)
# perform logging
self.log("val_loss", loss, on_epoch=True, prog_bar=False, logger=True)
self.log("val_acc", acc, on_epoch=True, prog_bar=True, logger=True)
def test_dataloader(self):
return self._dataloader(self.test_path)
def test_step(self, batch, batch_idx):
loss, acc = self._step(batch)
# perform logging
self.log("test_loss", loss, on_step=True, prog_bar=True, logger=True)
self.log("test_acc", acc, on_step=True, prog_bar=True, logger=True)
if __name__ == "__main__":
parser = ArgumentParser()
# Required arguments
parser.add_argument(
"model",
help="""Choose one of the predefined ResNet models provided by torchvision. e.g. 50""",
type=int,
)
parser.add_argument(
"num_classes", help="""Number of classes to be learned.""", type=int
)
parser.add_argument("num_epochs", help="""Number of Epochs to Run.""", type=int)
parser.add_argument(
"train_set", help="""Path to training data folder.""", type=Path
)
parser.add_argument("val_set", help="""Path to validation set folder.""", type=Path)
# Optional arguments
parser.add_argument(
"-amp",
"--mixed_precision",
help="""Use mixed precision during training. Defaults to False.""",
action="store_true",
)
parser.add_argument(
"-ts", "--test_set", help="""Optional test set path.""", type=Path
)
parser.add_argument(
"-o",
"--optimizer",
help="""PyTorch optimizer to use. Defaults to adam.""",
default="adam",
)
parser.add_argument(
"-lr",
"--learning_rate",
help="Adjust learning rate of optimizer.",
type=float,
default=1e-3,
)
parser.add_argument(
"-b",
"--batch_size",
help="""Manually determine batch size. Defaults to 16.""",
type=int,
default=16,
)
parser.add_argument(
"-tr",
"--transfer",
help="""Determine whether to use pretrained model or train from scratch. Defaults to True.""",
action="store_true",
)
parser.add_argument(
"-to",
"--tune_fc_only",
help="Tune only the final, fully connected layers.",
action="store_true",
)
parser.add_argument(
"-s", "--save_path", help="""Path to save model trained model checkpoint."""
)
parser.add_argument(
"-g", "--gpus", help="""Enables GPU acceleration.""", type=int, default=None
)
args = parser.parse_args()
# # Instantiate Model
model = ResNetClassifier(
num_classes=args.num_classes,
resnet_version=args.model,
train_path=args.train_set,
val_path=args.val_set,
test_path=args.test_set,
optimizer=args.optimizer,
lr=args.learning_rate,
batch_size=args.batch_size,
transfer=args.transfer,
tune_fc_only=args.tune_fc_only,
)
save_path = args.save_path if args.save_path is not None else "./models"
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath=save_path,
filename="resnet-model-{epoch}-{val_loss:.2f}-{val_acc:0.2f}",
monitor="val_loss",
save_top_k=3,
mode="min",
save_last=True,
)
stopping_callback = pl.callbacks.EarlyStopping()
# Instantiate lightning trainer and train model
trainer_args = {
"accelerator": "gpu" if args.gpus else None,
"devices": [1],
"strategy": "dp" if args.gpus > 1 else None,
"max_epochs": args.num_epochs,
"callbacks": [checkpoint_callback],
"precision": 16 if args.mixed_precision else 32,
}
trainer = pl.Trainer(**trainer_args)
trainer.fit(model)
if args.test_set:
trainer.test(model)
# Save trained model weights
torch.save(trainer.model.resnet_model.state_dict(), save_path + "/trained_model.pt")