-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathRead_Raw_Data_Save_Into_Matlab_Files.py
493 lines (396 loc) · 17.3 KB
/
Read_Raw_Data_Save_Into_Matlab_Files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import io
import pyedflib
import scipy.io as sio
import os
os.chdir('K:/Google_Driver/EEG_Features_For_Multi_class_Motor_Imagery/EEG_Test_Raw_Data/PhysioNet_MI_Dataset/')
SAVE = 'K:/Google_Driver/EEG_Features_For_Multi_class_Motor_Imagery/EEG_Test_Raw_Data/Saved_Matlab_Data/'
MOVEMENT_START = 1 * 160 # MI starts 1s after trial begin
MOVEMENT_END = 5 * 160 # MI lasts 4 seconds
NOISE_LEVEL = 0.01
PHYSIONET_ELECTRODES = {
1: "FC5", 2: "FC3", 3: "FC1", 4: "FCz", 5: "FC2", 6: "FC4",
7: "FC6", 8: "C5", 9: "C3", 10: "C1", 11: "Cz", 12: "C2",
13: "C4", 14: "C6", 15: "CP5", 16: "CP3", 17: "CP1", 18: "CPz",
19: "CP2", 20: "CP4", 21: "CP6", 22: "Fp1", 23: "Fpz", 24: "Fp2",
25: "AF7", 26: "AF3", 27: "AFz", 28: "AF4", 29: "AF8", 30: "F7",
31: "F5", 32: "F3", 33: "F1", 34: "Fz", 35: "F2", 36: "F4",
37: "F6", 38: "F8", 39: "FT7", 40: "FT8", 41: "T7", 42: "T8",
43: "T9", 44: "T10", 45: "TP7", 46: "TP8", 47: "P7", 48: "P5",
49: "P3", 50: "P1", 51: "Pz", 52: "P2", 53: "P4", 54: "P6",
55: "P8", 56: "PO7", 57: "PO3", 58: "POz", 59: "PO4", 60: "PO8",
61: "O1", 62: "Oz", 63: "O2", 64: "Iz"
}
def load_edf_signals(path):
try:
sig = pyedflib.EdfReader(path)
n = sig.signals_in_file
signal_labels = sig.getSignalLabels()
sigbuf = np.zeros((n, sig.getNSamples()[0]))
for j in np.arange(n):
sigbuf[j, :] = sig.readSignal(j)
# (n,3) annotations: [t in s, duration, type T0/T1/T2]
annotations = sig.read_annotation()
except KeyboardInterrupt:
# prevent memory leak and access problems of unclosed buffers
sig._close()
raise
sig._close()
del sig
return sigbuf.transpose(), annotations
def get_physionet_electrode_positions():
refpos = get_electrode_positions()
return np.array([refpos[PHYSIONET_ELECTRODES[idx]] for idx in range(1, 65)])
def projection_2d(loc):
"""
Azimuthal equidistant projection (AEP) of 3D carthesian coordinates.
Preserves distance to origin while projecting to 2D carthesian space.
loc: N x 3 array of 3D points
returns: N x 2 array of projected 2D points
"""
x, y, z = loc[:, 0], loc[:, 1], loc[:, 2]
theta = np.arctan2(y, x) # theta = azimuth
rho = np.pi / 2 - np.arctan2(z, np.hypot(x, y)) # rho = pi/2 - elevation
return np.stack((np.multiply(rho, np.cos(theta)), np.multiply(rho, np.sin(theta))), 1)
def get_electrode_positions():
"""
Returns a dictionary (Name) -> (x,y,z) of electrode name in the extended
10-20 system and its carthesian coordinates in unit sphere.
"""
positions = dict()
with io.open("electrode_positions.txt", "r") as pos_file:
for line in pos_file:
parts = line.split()
positions[parts[0]] = tuple([float(part) for part in parts[1:]])
return positions
def load_physionet_data(subject_id, num_classes=4, long_edge=False):
"""
subject_id: ID (1-109) for the subject to be loaded from file
num_classes: number of classes (2, 3 or 4) for L/R, L/R/0, L/R/0/F
long_edge: if False include 1s before and after MI, if True include 3s
returns (X, y, pos, fs)
X: Trials with shape (N_subjects, N_trials, N_samples, N_channels)
y: labels with shape (N_subjects, N_trials, N_classes)
pos: 2D projected electrode positions
fs: sample rate
"""
SAMPLE_RATE = 160
EEG_CHANNELS = 64
BASELINE_RUN = 1
MI_RUNS = [4, 8, 12] # l/r fist
if num_classes >= 4:
MI_RUNS += [6, 10, 14] # feet (& fists)
# total number of samples per long run
RUN_LENGTH = 125 * SAMPLE_RATE
# length of single trial in seconds
TRIAL_LENGTH = 4 if not long_edge else 6
NUM_TRIALS = 21 * num_classes
n_runs = len(MI_RUNS)
X = np.zeros((n_runs, RUN_LENGTH, EEG_CHANNELS))
events = []
base_path = 'S%03dR%02d.edf'
for i_run, current_run in enumerate(MI_RUNS):
# load from file
path = base_path % (subject_id, current_run)
signals, annotations = load_edf_signals(path)
X[i_run, :signals.shape[0], :] = signals
# read annotations
current_event = [i_run, 0, 0, 0] # run, class (l/r), start, end
for annotation in annotations:
t = int(annotation[0] * SAMPLE_RATE * 1e-7)
action = int(annotation[2][1])
if action == 0 and current_event[1] != 0:
# make 6 second runs by extending snippet
length = TRIAL_LENGTH * SAMPLE_RATE
pad = (length - (t - current_event[2])) / 2
current_event[2] -= pad + (t - current_event[2]) % 2
current_event[3] = t + pad
if (current_run - 6) % 4 != 0 or current_event[1] == 2:
if (current_run - 6) % 4 == 0:
current_event[1] = 3
events.append(current_event)
elif action > 0:
current_event = [i_run, action, t, 0]
# split runs into trials
num_mi_trials = len(events)
trials = np.zeros((NUM_TRIALS, TRIAL_LENGTH * SAMPLE_RATE, EEG_CHANNELS))
labels = np.zeros((NUM_TRIALS, num_classes))
for i, ev in enumerate(events):
trials[i, :, :] = X[ev[0], ev[2]:ev[3]]
labels[i, ev[1] - 1] = 1.
if num_classes < 3:
return (trials[:num_mi_trials, ...], labels[:num_mi_trials, ...], projection_2d(get_physionet_electrode_positions()), SAMPLE_RATE)
else:
# baseline run
path = base_path % (subject_id, BASELINE_RUN)
signals, annotations = load_edf_signals(path)
SAMPLES = TRIAL_LENGTH * SAMPLE_RATE
for i in range(num_mi_trials, NUM_TRIALS):
offset = np.random.randint(0, signals.shape[0] - SAMPLES)
trials[i, :, :] = signals[offset: offset+SAMPLES, :]
labels[i, -1] = 1.
return trials, labels, projection_2d(get_physionet_electrode_positions()), SAMPLE_RATE
def load_raw_data(electrodes, subject=None, num_classes=4, long_edge=False):
# load from file
trials = []
labels = []
if subject == None:
subject_ids = range(1, 110)
else:
try:
subject_ids = [int(subject)]
except:
subject_ids = subject
for subject_id in subject_ids:
try:
t, l, loc, fs = load_physionet_data(subject_id, num_classes, long_edge=long_edge)
if num_classes == 2 and t.shape[0] != 42:
# drop subjects with less trials
continue
trials.append(t[:, :, electrodes])
labels.append(l)
except:
pass
return np.array(trials, dtype=np.float64).reshape((len(trials),) + trials[0].shape + (1,)), np.array(labels, dtype=np.float64)
nclasses = 4
print("Start to save the File!")
# C5
electrodes = [8]
subject = range(1, 106)
X_105_C5, y_105_C5 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_C5 = np.squeeze(X_105_C5)
sio.savemat(SAVE + 'Dataset_105_C5.mat', {'Dataset': X_105_C5})
sio.savemat(SAVE + 'Labels_105_C5.mat', {'Labels': y_105_C5})
electrodes = [8]
subject = range(106, 110)
X_4_C5, y_4_C5 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_C5 = np.squeeze(X_4_C5)
sio.savemat(SAVE + 'Dataset_4_C5.mat', {'Dataset': X_4_C5})
sio.savemat(SAVE + 'Labels_4_C5.mat', {'Labels': y_4_C5})
print("Save C5 data successfully!")
# C3
electrodes = [9]
subject = range(1, 106)
X_105_C3, y_105_C3 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_C3 = np.squeeze(X_105_C3)
sio.savemat(SAVE + 'Dataset_105_C3.mat', {'Dataset': X_105_C3})
sio.savemat(SAVE + 'Labels_105_C3.mat', {'Labels': y_105_C3})
electrodes = [9]
subject = range(106, 110)
X_4_C3, y_4_C3 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_C3 = np.squeeze(X_4_C3)
sio.savemat(SAVE + 'Dataset_4_C3.mat', {'Dataset': X_4_C3})
sio.savemat(SAVE + 'Labels_4_C3.mat', {'Labels': y_4_C3})
print("Save C3 data successfully!")
# C1
electrodes = [10]
subject = range(1, 106)
X_105_C1, y_105_C1 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_C1 = np.squeeze(X_105_C1)
sio.savemat(SAVE + 'Dataset_105_C1.mat', {'Dataset': X_105_C1})
sio.savemat(SAVE + 'Labels_105_C1.mat', {'Labels': y_105_C1})
electrodes = [10]
subject = range(106, 110)
X_4_C1, y_4_C1 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_C1 = np.squeeze(X_4_C1)
sio.savemat(SAVE + 'Dataset_4_C1.mat', {'Dataset': X_4_C1})
sio.savemat(SAVE + 'Labels_4_C1.mat', {'Labels': y_4_C1})
print("Save C1 data successfully!")
# C2
electrodes = [12]
subject = range(1, 106)
X_105_C2, y_105_C2 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_C2 = np.squeeze(X_105_C2)
sio.savemat(SAVE + 'Dataset_105_C2.mat', {'Dataset': X_105_C2})
sio.savemat(SAVE + 'Labels_105_C2.mat', {'Labels': y_105_C2})
electrodes = [12]
subject = range(106, 110)
X_4_C2, y_4_C2 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_C2 = np.squeeze(X_4_C2)
sio.savemat(SAVE + 'Dataset_4_C2.mat', {'Dataset': X_4_C2})
sio.savemat(SAVE + 'Labels_4_C2.mat', {'Labels': y_4_C2})
print("Save C2 data successfully!")
# C4
electrodes = [13]
subject = range(1, 106)
X_105_C4, y_105_C4 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_C4 = np.squeeze(X_105_C4)
sio.savemat(SAVE + 'Dataset_105_C4.mat', {'Dataset': X_105_C4})
sio.savemat(SAVE + 'Labels_105_C4.mat', {'Labels': y_105_C4})
electrodes = [13]
subject = range(106, 110)
X_4_C4, y_4_C4 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_C4 = np.squeeze(X_4_C4)
sio.savemat(SAVE + 'Dataset_4_C4.mat', {'Dataset': X_4_C4})
sio.savemat(SAVE + 'Labels_4_C4.mat', {'Labels': y_4_C4})
print("Save C4 data successfully!")
# C6
electrodes = [14]
subject = range(1, 106)
X_105_C6, y_105_C6 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_C6 = np.squeeze(X_105_C6)
sio.savemat(SAVE + 'Dataset_105_C6.mat', {'Dataset': X_105_C6})
sio.savemat(SAVE + 'Labels_105_C6.mat', {'Labels': y_105_C6})
electrodes = [14]
subject = range(106, 110)
X_4_C6, y_4_C6 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_C6 = np.squeeze(X_4_C6)
sio.savemat(SAVE + 'Dataset_4_C6.mat', {'Dataset': X_4_C6})
sio.savemat(SAVE + 'Labels_4_C6.mat', {'Labels': y_4_C6})
print("Save C6 data successfully!")
# CP5
electrodes = [15]
subject = range(1, 106)
X_105_CP5, y_105_CP5 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_CP5 = np.squeeze(X_105_CP5)
sio.savemat(SAVE + 'Dataset_105_CP5.mat', {'Dataset': X_105_CP5})
sio.savemat(SAVE + 'Labels_105_CP5.mat', {'Labels': y_105_CP5})
electrodes = [15]
subject = range(106, 110)
X_4_CP5, y_4_CP5 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_CP5 = np.squeeze(X_4_CP5)
sio.savemat(SAVE + 'Dataset_4_CP5.mat', {'Dataset': X_4_CP5})
sio.savemat(SAVE + 'Labels_4_CP5.mat', {'Labels': y_4_CP5})
print("Save CP5 data successfully!")
# CP3
electrodes = [16]
subject = range(1, 106)
X_105_CP3, y_105_CP3 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_CP3 = np.squeeze(X_105_CP3)
sio.savemat(SAVE + 'Dataset_105_CP3.mat', {'Dataset': X_105_CP3})
sio.savemat(SAVE + 'Labels_105_CP3.mat', {'Labels': y_105_CP3})
electrodes = [16]
subject = range(106, 110)
X_4_CP3, y_4_CP3 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_CP3 = np.squeeze(X_4_CP3)
sio.savemat(SAVE + 'Dataset_4_CP3.mat', {'Dataset': X_4_CP3})
sio.savemat(SAVE + 'Labels_4_CP3.mat', {'Labels': y_4_CP3})
print("Save CP3 data successfully!")
# CP1
electrodes = [17]
subject = range(1, 106)
X_105_CP1, y_105_CP1 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_CP1 = np.squeeze(X_105_CP1)
sio.savemat(SAVE + 'Dataset_105_CP1.mat', {'Dataset': X_105_CP1})
sio.savemat(SAVE + 'Labels_105_CP1.mat', {'Labels': y_105_CP1})
electrodes = [17]
subject = range(106, 110)
X_4_CP1, y_4_CP1 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_CP1 = np.squeeze(X_4_CP1)
sio.savemat(SAVE + 'Dataset_4_CP1.mat', {'Dataset': X_4_CP1})
sio.savemat(SAVE + 'Labels_4_CP1.mat', {'Labels': y_4_CP1})
print("Save CP1 data successfully!")
# CP2
electrodes = [19]
subject = range(1, 106)
X_105_CP2, y_105_CP2 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_CP2 = np.squeeze(X_105_CP2)
sio.savemat(SAVE + 'Dataset_105_CP2.mat', {'Dataset': X_105_CP2})
sio.savemat(SAVE + 'Labels_105_CP2.mat', {'Labels': y_105_CP2})
electrodes = [19]
subject = range(106, 110)
X_4_CP2, y_4_CP2 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_CP2 = np.squeeze(X_4_CP2)
sio.savemat(SAVE + 'Dataset_4_CP2.mat', {'Dataset': X_4_CP2})
sio.savemat(SAVE + 'Labels_4_CP2.mat', {'Labels': y_4_CP2})
print("Save CP2 data successfully!")
# CP4
electrodes = [20]
subject = range(1, 106)
X_105_CP4, y_105_CP4 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_CP4 = np.squeeze(X_105_CP4)
sio.savemat(SAVE + 'Dataset_105_CP4.mat', {'Dataset': X_105_CP4})
sio.savemat(SAVE + 'Labels_105_CP4.mat', {'Labels': y_105_CP4})
electrodes = [20]
subject = range(106, 110)
X_4_CP4, y_4_CP4 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_CP4 = np.squeeze(X_4_CP4)
sio.savemat(SAVE + 'Dataset_4_CP4.mat', {'Dataset': X_4_CP4})
sio.savemat(SAVE + 'Labels_4_CP4.mat', {'Labels': y_4_CP4})
print("Save CP4 data successfully!")
# CP6
electrodes = [21]
subject = range(1, 106)
X_105_CP6, y_105_CP6 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_CP6 = np.squeeze(X_105_CP6)
sio.savemat(SAVE + 'Dataset_105_CP6.mat', {'Dataset': X_105_CP6})
sio.savemat(SAVE + 'Labels_105_CP6.mat', {'Labels': y_105_CP6})
electrodes = [21]
subject = range(106, 110)
X_4_CP6, y_4_CP6 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_CP6 = np.squeeze(X_4_CP6)
sio.savemat(SAVE + 'Dataset_4_CP6.mat', {'Dataset': X_4_CP6})
sio.savemat(SAVE + 'Labels_4_CP6.mat', {'Labels': y_4_CP6})
print("Save CP6 data successfully!")
# P5
electrodes = [48]
subject = range(1, 106)
X_105_P5, y_105_P5 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_P5 = np.squeeze(X_105_P5)
sio.savemat(SAVE + 'Dataset_105_P5.mat', {'Dataset': X_105_P5})
sio.savemat(SAVE + 'Labels_105_P5.mat', {'Labels': y_105_P5})
electrodes = [48]
subject = range(106, 110)
X_4_P5, y_4_P5 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_P5 = np.squeeze(X_4_P5)
sio.savemat(SAVE + 'Dataset_4_P5.mat', {'Dataset': X_4_P5})
sio.savemat(SAVE + 'Labels_4_P5.mat', {'Labels': y_4_P5})
print("Save P5 data successfully!")
# P3
electrodes = [49]
subject = range(1, 106)
X_105_P3, y_105_P3 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_P3 = np.squeeze(X_105_P3)
sio.savemat(SAVE + 'Dataset_105_P3.mat', {'Dataset': X_105_P3})
sio.savemat(SAVE + 'Labels_105_P3.mat', {'Labels': y_105_P3})
electrodes = [49]
subject = range(106, 110)
X_4_P3, y_4_P3 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_P3 = np.squeeze(X_4_P3)
sio.savemat(SAVE + 'Dataset_4_P3.mat', {'Dataset': X_4_P3})
sio.savemat(SAVE + 'Labels_4_P3.mat', {'Labels': y_4_P3})
print("Save P3 data successfully!")
# P1
electrodes = [50]
subject = range(1, 106)
X_105_P1, y_105_P1 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_P1 = np.squeeze(X_105_P1)
sio.savemat(SAVE + 'Dataset_105_P1.mat', {'Dataset': X_105_P1})
sio.savemat(SAVE + 'Labels_105_P1.mat', {'Labels': y_105_P1})
electrodes = [50]
subject = range(106, 110)
X_4_P1, y_4_P1 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_P1 = np.squeeze(X_4_P1)
sio.savemat(SAVE + 'Dataset_4_P1.mat', {'Dataset': X_4_P1})
sio.savemat(SAVE + 'Labels_4_P1.mat', {'Labels': y_4_P1})
print("Save P1 data successfully!")
# P2
electrodes = [52]
subject = range(1, 106)
X_105_P2, y_105_P2 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_P2 = np.squeeze(X_105_P2)
sio.savemat(SAVE + 'Dataset_105_P2.mat', {'Dataset': X_105_P2})
sio.savemat(SAVE + 'Labels_105_P2.mat', {'Labels': y_105_P2})
electrodes = [52]
subject = range(106, 110)
X_4_P2, y_4_P2 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_P2 = np.squeeze(X_4_P2)
sio.savemat(SAVE + 'Dataset_4_P2.mat', {'Dataset': X_4_P2})
sio.savemat(SAVE + 'Labels_4_P2.mat', {'Labels': y_4_P2})
print("Save P2 data successfully!")
# P4
electrodes = [53]
subject = range(1, 106)
X_105_P4, y_105_P4 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_105_P4 = np.squeeze(X_105_P4)
sio.savemat(SAVE + 'Dataset_105_P4.mat', {'Dataset': X_105_P4})
sio.savemat(SAVE + 'Labels_105_P4.mat', {'Labels': y_105_P4})
electrodes = [53]
subject = range(106, 110)
X_4_P4, y_4_P4 = load_raw_data(electrodes=electrodes, subject=subject, num_classes=nclasses)
X_4_P4 = np.squeeze(X_4_P4)
sio.savemat(SAVE + 'Dataset_4_P4.mat', {'Dataset': X_4_P4})
sio.savemat(SAVE + 'Labels_4_P4.mat', {'Labels': y_4_P4})
print("Save P4 data successfully!")