-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathrun_new.py
264 lines (245 loc) · 12.1 KB
/
run_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import sys
sys.path.append('../../')
import time
import argparse
import os
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from utils.pytorchtools import EarlyStopping
from utils.data import load_data
from GNN import myGAT
import dgl
import os
def sp_to_spt(mat):
coo = mat.tocoo()
values = coo.data
indices = np.vstack((coo.row, coo.col))
i = torch.LongTensor(indices)
v = torch.FloatTensor(values)
shape = coo.shape
return torch.sparse.FloatTensor(i, v, torch.Size(shape))
def mat2tensor(mat):
if type(mat) is np.ndarray:
return torch.from_numpy(mat).type(torch.FloatTensor)
return sp_to_spt(mat)
def run_model_DBLP(args):
feats_type = args.feats_type
features_list, adjM, dl = load_data(args.dataset)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
features_list = [mat2tensor(features).to(device) for features in features_list]
if feats_type == 0:
in_dims = [features.shape[1] for features in features_list]
elif feats_type == 1 or feats_type == 5:
save = 0 if feats_type == 1 else 2
in_dims = []#[features_list[0].shape[1]] + [10] * (len(features_list) - 1)
for i in range(0, len(features_list)):
if i == save:
in_dims.append(features_list[i].shape[1])
else:
in_dims.append(10)
features_list[i] = torch.zeros((features_list[i].shape[0], 10)).to(device)
elif feats_type == 2 or feats_type == 4:
save = feats_type - 2
in_dims = [features.shape[0] for features in features_list]
for i in range(0, len(features_list)):
if i == save:
in_dims[i] = features_list[i].shape[1]
continue
dim = features_list[i].shape[0]
indices = np.vstack((np.arange(dim), np.arange(dim)))
indices = torch.LongTensor(indices)
values = torch.FloatTensor(np.ones(dim))
features_list[i] = torch.sparse.FloatTensor(indices, values, torch.Size([dim, dim])).to(device)
elif feats_type == 3:
in_dims = [features.shape[0] for features in features_list]
for i in range(len(features_list)):
dim = features_list[i].shape[0]
indices = np.vstack((np.arange(dim), np.arange(dim)))
indices = torch.LongTensor(indices)
values = torch.FloatTensor(np.ones(dim))
features_list[i] = torch.sparse.FloatTensor(indices, values, torch.Size([dim, dim])).to(device)
edge2type = {}
for k in dl.links['data']:
for u,v in zip(*dl.links['data'][k].nonzero()):
edge2type[(u,v)] = k
for i in range(dl.nodes['total']):
if (i,i) not in edge2type:
edge2type[(i,i)] = len(dl.links['count'])
for k in dl.links['data']:
for u,v in zip(*dl.links['data'][k].nonzero()):
if (v,u) not in edge2type:
edge2type[(v,u)] = k+1+len(dl.links['count'])
g = dgl.DGLGraph(adjM+(adjM.T))
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
g = g.to(device)
e_feat = []
for u, v in zip(*g.edges()):
u = u.cpu().item()
v = v.cpu().item()
e_feat.append(edge2type[(u,v)])
e_feat = torch.tensor(e_feat, dtype=torch.long).to(device)
res_2hop = defaultdict(float)
res_random = defaultdict(float)
total = len(list(dl.links_test['data'].keys()))
first_flag = True
for test_edge_type in dl.links_test['data'].keys():
train_pos, valid_pos = dl.get_train_valid_pos()#edge_types=[test_edge_type])
train_pos = train_pos[test_edge_type]
valid_pos = valid_pos[test_edge_type]
num_classes = args.hidden_dim
heads = [args.num_heads] * args.num_layers + [args.num_heads]#[1]
net = myGAT(g, args.edge_feats, len(dl.links['count'])*2+1, in_dims, args.hidden_dim, num_classes, args.num_layers, heads, F.elu, args.dropout, args.dropout, args.slope, args.residual, args.residual_att, decode=args.decoder)
net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# training loop
net.train()
early_stopping = EarlyStopping(patience=args.patience, verbose=True, save_path='checkpoint/checkpoint_{}_{}.pt'.format(args.dataset, args.num_layers))
loss_func = nn.BCELoss()
for epoch in range(args.epoch):
train_neg = dl.get_train_neg(edge_types=[test_edge_type])[test_edge_type]
train_pos_head_full = np.array(train_pos[0])
train_pos_tail_full = np.array(train_pos[1])
train_neg_head_full = np.array(train_neg[0])
train_neg_tail_full = np.array(train_neg[1])
train_idx = np.arange(len(train_pos_head_full))
np.random.shuffle(train_idx)
batch_size = args.batch_size
for step, start in enumerate(range(0, len(train_pos_head_full), args.batch_size)):
t_start = time.time()
# training
net.train()
train_pos_head = train_pos_head_full[train_idx[start:start+batch_size]]
train_neg_head = train_neg_head_full[train_idx[start:start+batch_size]]
train_pos_tail = train_pos_tail_full[train_idx[start:start+batch_size]]
train_neg_tail = train_neg_tail_full[train_idx[start:start+batch_size]]
left = np.concatenate([train_pos_head, train_neg_head])
right = np.concatenate([train_pos_tail, train_neg_tail])
mid = np.zeros(train_pos_head.shape[0]+train_neg_head.shape[0], dtype=np.int32)
labels = torch.FloatTensor(np.concatenate([np.ones(train_pos_head.shape[0]), np.zeros(train_neg_head.shape[0])])).to(device)
logits = net(features_list, e_feat, left, right, mid)
logp = F.sigmoid(logits)
train_loss = loss_func(logp, labels)
# autograd
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
t_end = time.time()
# print training info
print('Epoch {:05d}, Step{:05d} | Train_Loss: {:.4f} | Time: {:.4f}'.format(epoch, step, train_loss.item(), t_end-t_start))
t_start = time.time()
# validation
net.eval()
with torch.no_grad():
valid_neg = dl.get_valid_neg(edge_types=[test_edge_type])[test_edge_type]
valid_pos_head = np.array(valid_pos[0])
valid_pos_tail = np.array(valid_pos[1])
valid_neg_head = np.array(valid_neg[0])
valid_neg_tail = np.array(valid_neg[1])
left = np.concatenate([valid_pos_head, valid_neg_head])
right = np.concatenate([valid_pos_tail, valid_neg_tail])
mid = np.zeros(valid_pos_head.shape[0]+valid_neg_head.shape[0], dtype=np.int32)
labels = torch.FloatTensor(np.concatenate([np.ones(valid_pos_head.shape[0]), np.zeros(valid_neg_head.shape[0])])).to(device)
logits = net(features_list, e_feat, left, right, mid)
logp = F.sigmoid(logits)
val_loss = loss_func(logp, labels)
t_end = time.time()
# print validation info
print('Epoch {:05d} | Val_Loss {:.4f} | Time(s) {:.4f}'.format(
epoch, val_loss.item(), t_end - t_start))
# early stopping
early_stopping(val_loss, net)
if early_stopping.early_stop:
print('Early stopping!')
break
if early_stopping.early_stop:
print('Early stopping!')
break
# testing with evaluate_results_nc
net.load_state_dict(torch.load('checkpoint/checkpoint_{}_{}.pt'.format(args.dataset, args.num_layers)))
net.eval()
test_logits = []
with torch.no_grad():
test_neigh, test_label = dl.get_test_neigh()
test_neigh = test_neigh[test_edge_type]
test_label = test_label[test_edge_type]
# save = np.array([test_neigh[0], test_neigh[1], test_label])
# print(save)
# np.savetxt(f"{args.dataset}_{test_edge_type}_label.txt", save, fmt="%i")
if os.path.exists(os.path.join(dl.path, f"{args.dataset}_ini_{test_edge_type}_label.txt")):
save = np.loadtxt(os.path.join(dl.path, f"{args.dataset}_ini_{test_edge_type}_label.txt"), dtype=int)
test_neigh = [save[0], save[1]]
if save.shape[0] == 2:
test_label = np.random.randint(2, size=save[0].shape[0])
else:
test_label = save[2]
left = np.array(test_neigh[0])
right = np.array(test_neigh[1])
mid = np.zeros(left.shape[0], dtype=np.int32)
mid[:] = test_edge_type
labels = torch.FloatTensor(test_label).to(device)
logits = net(features_list, e_feat, left, right, mid)
pred = F.sigmoid(logits).cpu().numpy()
edge_list = np.concatenate([left.reshape((1,-1)), right.reshape((1,-1))], axis=0)
labels = labels.cpu().numpy()
dl.gen_file_for_evaluate(test_neigh, pred, test_edge_type, file_path=f"{args.dataset}_{args.run}.txt", flag=first_flag)
first_flag = False
res = dl.evaluate(edge_list, pred, labels)
print(res)
for k in res:
res_2hop[k] += res[k]
with torch.no_grad():
test_neigh, test_label = dl.get_test_neigh_w_random()
test_neigh = test_neigh[test_edge_type]
test_label = test_label[test_edge_type]
left = np.array(test_neigh[0])
right = np.array(test_neigh[1])
mid = np.zeros(left.shape[0], dtype=np.int32)
mid[:] = test_edge_type
labels = torch.FloatTensor(test_label).to(device)
logits = net(features_list, e_feat, left, right, mid)
pred = F.sigmoid(logits).cpu().numpy()
edge_list = np.concatenate([left.reshape((1,-1)), right.reshape((1,-1))], axis=0)
labels = labels.cpu().numpy()
res = dl.evaluate(edge_list, pred, labels)
print(res)
for k in res:
res_random[k] += res[k]
for k in res_2hop:
res_2hop[k] /= total
for k in res_random:
res_random[k] /= total
print(res_2hop)
print(res_random)
if __name__ == '__main__':
ap = argparse.ArgumentParser(description='MRGNN testing for the DBLP dataset')
ap.add_argument('--feats-type', type=int, default=3,
help='Type of the node features used. ' +
'0 - loaded features; ' +
'1 - only target node features (zero vec for others); ' +
'2 - only target node features (id vec for others); ' +
'3 - all id vec. Default is 2;' +
'4 - only term features (id vec for others);' +
'5 - only term features (zero vec for others).')
ap.add_argument('--hidden-dim', type=int, default=64, help='Dimension of the node hidden state. Default is 64.')
ap.add_argument('--num-heads', type=int, default=2, help='Number of the attention heads. Default is 8.')
ap.add_argument('--epoch', type=int, default=40, help='Number of epochs.')
ap.add_argument('--patience', type=int, default=40, help='Patience.')
ap.add_argument('--num-layers', type=int, default=3)
ap.add_argument('--lr', type=float, default=5e-4)
ap.add_argument('--dropout', type=float, default=0.5)
ap.add_argument('--weight-decay', type=float, default=2e-4)
ap.add_argument('--slope', type=float, default=0.01)
ap.add_argument('--dataset', type=str)
ap.add_argument('--edge-feats', type=int, default=32)
ap.add_argument('--batch-size', type=int, default=8192)
ap.add_argument('--decoder', type=str, default='dot')
ap.add_argument('--residual-att', type=float, default=0.)
ap.add_argument('--residual', type=bool, default=False)
ap.add_argument('--run', type=int, default=1)
args = ap.parse_args()
os.makedirs('checkpoint', exist_ok=True)
run_model_DBLP(args)