-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
443 lines (372 loc) · 18.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
.. codeauthor:: Dominik Höchemer <dominik.hoechemer@tu-ilmenau.de>
.. codeauthor:: Daniel Seichter <daniel.seichter@tu-ilmenau.de>
"""
import argparse as ap
from datetime import datetime
import os
import pickle
import sys
import warnings
import numpy as np
import sklearn.metrics as metrics
import torch
from src.data.dataset import get_combined_dataset
from src.data.dataset_sampler import DatasetSamplerMultiDataset
from src.data.postprocessing import biternion2deg
from src.data.postprocessing import normalize_orientation_output
from src.data.preprocessing import OrientationAugmentation
from src.data.preprocessing import get_preprocessing
from src.evaluation_utils import get_statistics_binary
from src.evaluation_utils import pr_measures
from src.evaluation_utils import roc_measures
from src.io_utils import create_directory_if_not_exists
from src.logger import CSVLogger
from src.losses import get_new_loss_weights_dwa
from src.losses import VonmisesLossBiternion
from src.lr_decay import LRPolyDecay
from src.models import get_model_by_string
from src.parameters import add_hyperparameters_to_argparser
def _parse_args():
"""Parse command-line arguments"""
desc = 'Train neural network for multi-task person perception'
parser = ap.ArgumentParser(description=desc,
formatter_class=ap.RawTextHelpFormatter)
# dataset -----------------------------------------------------------------
parser.add_argument('-db', '--dataset_basepath',
type=str,
default='./datasets',
help='Path to downloaded dataset')
parser.add_argument('-ds', '--datasets',
type=str,
default='multitask+orientation',
choices=['multitask+orientation',
'multitask',
'orientation'],
help='Datasets to use seperated by +')
parser.add_argument('-rd', '--result_dir',
type=str,
default='./results',
help='Where to store the results')
# hyper parameters --------------------------------------------------------
parser = add_hyperparameters_to_argparser(parser)
# return parsed args
return parser.parse_args()
def main():
args = _parse_args()
batch_size = args.batch_size
dataset_names = args.datasets.split('+')
tasks = args.tasks.split('+')
tasks.sort() # sort so we always have the same order
print('Loading Dataset from ' + args.dataset_basepath)
print('Using datasets: ' + ' '.join(dataset_names))
print('Tasks: ' + ' '.join(tasks))
if 'orientation' in tasks and 'orientation' not in dataset_names:
warnings.warn("No ground-truth data for orientation in datasets")
if 'detection' in tasks and 'multitask' not in dataset_names:
warnings.warn("No non-person data available in datasets")
if 'pose' in tasks and 'multitask' not in dataset_names:
warnings.warn("Only standing persons in datasets")
# create training ID and folder, make sure random id is unique
training_starttime = datetime.now().strftime("%d_%m_%Y-%H_%M_%S-%f")
train_dir = os.path.join(args.result_dir,
f'{args.training_name}__{training_starttime}')
if os.path.exists(train_dir):
raise IOError(f'Output directory: {train_dir} already exists.')
create_directory_if_not_exists(train_dir)
model_dir = os.path.join(train_dir, 'models')
create_directory_if_not_exists(model_dir)
network_outputs_dir = os.path.join(train_dir, 'network_outputs')
create_directory_if_not_exists(network_outputs_dir)
# get preprocessing
data_transform, _, _ = get_preprocessing(args.model)
# augmentation
if args.augmentation == 'flip':
augmentation = OrientationAugmentation()
else:
augmentation = None
# train data
dataset_list_train = get_combined_dataset(dataset_names,
set_name='train',
transform=data_transform,
basepath=args.dataset_basepath,
augmentation=augmentation)
dataset_train = torch.utils.data.ConcatDataset(dataset_list_train)
if args.dataset_combination == 'concat':
detection_train_loader = torch.utils.data.DataLoader(
dataset_train, batch_size=batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=False, drop_last=True
)
elif args.dataset_combination == '50_50':
# create uniform dataset sampler
sampler = DatasetSamplerMultiDataset(dataset_list_train,
batch_size=batch_size,
shuffle=True)
detection_train_loader = torch.utils.data.DataLoader(
dataset_train,
batch_size=batch_size,
sampler=sampler,
num_workers=args.num_workers,
pin_memory=False,
drop_last=True
)
else:
raise ValueError(f"Unknown dataset combination method "
f"{args.dataset_combination}")
# validation data
dataset_list_valid = get_combined_dataset(dataset_names,
set_name='valid',
transform=data_transform,
basepath=args.dataset_basepath)
dataset_valid = torch.utils.data.ConcatDataset(dataset_list_valid)
detection_valid_loader = torch.utils.data.DataLoader(
dataset_valid,
batch_size=2*batch_size, shuffle=False, num_workers=args.num_workers,
pin_memory=False, drop_last=False)
# Store the data loaders
n_batches_train = len(dataset_train) // batch_size
dataset_loaders = {
'train': detection_train_loader,
'valid': detection_valid_loader
}
# load network
# use CUDA if available
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
model = get_model_by_string(args.model, device)
softmax = torch.nn.Softmax(dim=1)
# optimizer
params_lr = [{'params': model.parameters(), 'lr': args.learning_rate}]
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(params_lr, momentum=args.momentum)
if args.model.startswith('mobilenetv2'):
warnings.warn("\n\nMobileNetV2 should be trained with Adam\n\n")
elif args.optimizer == 'adam':
optimizer = torch.optim.Adam(params_lr)
else:
raise NotImplementedError(f"Optimizer {args.optimizer} not yet "
f"implemented")
# losses and loss weights
criterions = {
'detection': torch.nn.CrossEntropyLoss(reduction='none'),
'orientation': VonmisesLossBiternion(kappa=args.kappa),
'pose': torch.nn.CrossEntropyLoss(reduction='none', ignore_index=-100)
}
weights = {'detection': args.weight_detection,
'orientation': args.weight_orientation,
'pose': args.weight_pose}
weights_loss_history = {'detection': [],
'orientation': [],
'pose': []}
# lr decay
lr_decay = LRPolyDecay(args.learning_rate,
power=args.learning_rate_decay,
max_iter=args.n_epochs*n_batches_train,
lr_min=1e-6)
# logging
csvlogger = CSVLogger(os.path.join(train_dir, 'training.csv'))
# dump the parameters which were given to the script
with open(os.path.join(train_dir, 'argument_list.txt'), 'w') as f:
f.write(' '.join([f'--{k} {v}' for k, v in vars(args).items()]) + '\n')
# train loop
for epoch in range(args.n_epochs): # loop over the dataset
running_loss_train = 0.0
# create dicts for labels and scores
labels = {'train': {}, 'valid': {}}
scores = {'train': {}, 'valid': {}}
losses = {'train': {}, 'valid': {}}
metainfos = {'train': {}, 'valid': {}}
losses_by_task = {'train': {}, 'valid': {}}
losses_overall = {'train': 0.0, 'valid': 0.0}
for phase in ['train', 'valid']:
for task in tasks:
labels[phase][task] = []
scores[phase][task] = []
losses[phase][task] = []
for info in ['dataset', 'category_name', 'tape_name', 'person_id',
'image_id', 'instance_id']:
metainfos[phase][info] = []
for phase in ['train', 'valid']:
if phase == 'train':
model.train() # set model to train (dropout enabled etc.)
else:
model.eval() # set model to eval (dropout disabled etc.)
print('Validation...')
# iterate through dataset
for batch_idx, batch_data in enumerate(dataset_loaders[phase]):
input_images = batch_data['image'].to(device, non_blocking=True)
targets = {}
if 'detection' in tasks:
targets['detection'] = \
batch_data['is_person'].to(device, non_blocking=True).long()
if 'orientation' in tasks:
orientations_deg = np.array(batch_data['orientation'])
orientations_bit = \
np.array([np.cos(np.deg2rad(orientations_deg)),
np.sin(np.deg2rad(orientations_deg))],
dtype=np.float32)
orientations_bit = \
torch.from_numpy(orientations_bit.transpose((1, 0)))
targets['orientation'] = \
orientations_bit.contiguous().to(device,
non_blocking=True)
if 'pose' in tasks:
targets['pose'] = batch_data['pose'].to(device,
non_blocking=True)
# reset gradients
optimizer.zero_grad()
# track gradients only in train phase
with torch.set_grad_enabled(phase == 'train'):
output = model(input_images)
predictions = {
'detection': output[:, 0:2],
'orientation': normalize_orientation_output(output[:, 2:4]),
'pose': output[:, 4:7]
}
loss = 0
for task in tasks:
if task == 'orientation':
# mask out only the orientation samples
mask = [torch.from_numpy(np.array(batch_data['dataset']) == 'orientation')]
elif task == 'pose':
# mask out patches without pose
mask = targets[task] != -100
else:
# this will return all elements
mask = None
loss_ = criterions[task](predictions[task],
targets[task])
# loss for backpropagation
loss += weights[task] * loss_[mask].mean()
# (unmasked) loss for stats and running mean later
losses[phase][task].append(loss_.detach())
# run backpropagation and parameter update
if phase == 'train':
loss.backward()
optimizer.step()
lr_decay.update_optimizer(optimizer)
# statistics
# store all batch labels, scores and meta information
for task in tasks:
labels[phase][task].append(targets[task].clone())
scores[phase][task].append(predictions[task].detach())
for info in ['dataset', 'category_name', 'tape_name',
'person_id', 'image_id', 'instance_id']:
metainfos[phase][info].append(batch_data[info])
if phase == 'train':
running_loss_train += loss.item()
if batch_idx % 10 == 9:
# print every 10 mini-batches
running_loss_train_mean = \
running_loss_train / (batch_idx + 1)
print(f'[{(epoch+1):d}, {(batch_idx+1): 5d}] '
f'train_loss: {running_loss_train_mean:.6f}')
# phase (train or valid) completed
for task in tasks:
labels[phase][task] = torch.cat(labels[phase][task])
scores[phase][task] = torch.cat(scores[phase][task])
losses[phase][task] = torch.cat(losses[phase][task])
for info in ['dataset', 'category_name', 'tape_name', 'person_id',
'image_id', 'instance_id']:
metainfos[phase][info] = np.concatenate(metainfos[phase][info])
# calculate additional losses
for task in tasks: # calculate losses by task
if task == 'orientation':
mask = metainfos[phase]['category_name'] == 'person-standing-deeporientation'
losses_by_task[phase][task] = losses[phase][task][mask].mean().item()
elif task == 'pose':
# mask out person-Without-Pose
mask = labels[phase][task] != -100
losses_by_task[phase][task] = losses[phase][task][mask].mean().item()
else:
losses_by_task[phase][task] = losses[phase][task].mean().item()
losses_overall[phase] += weights[task] * losses_by_task[phase][task]
if phase == 'train':
weights_loss_history[task].append(losses_by_task[phase][task])
# move everything to cpu and convert to python structures
for task in tasks:
labels[phase][task] = labels[phase][task].cpu().numpy().tolist()
scores[phase][task] = scores[phase][task].cpu().numpy().tolist()
losses[phase][task] = losses[phase][task].cpu().numpy().tolist()
# end of epoch reached
# save weights
torch.save(model.state_dict(),
os.path.join(model_dir, f'epoch_{epoch}.pt'))
# dump all results
with open(os.path.join(network_outputs_dir,
f'epoch_{epoch}.pkl'), 'wb') as f:
pickle.dump({'labels': labels,
'scores': scores,
'losses': losses,
'metainfos': metainfos},
f, pickle.HIGHEST_PROTOCOL)
# create logs for csvlogger
logs = {'train_loss': losses_overall['train'],
'valid_loss': losses_overall['valid'],
'weight_detection': weights['detection'],
'weight_orientation': weights['orientation'],
'weight_pose': weights['pose']}
for i, lr in enumerate(lr_decay.get_current_lr()):
logs[f'lr_{i}'] = lr
for phase in ['train', 'valid']:
for task, l in losses_by_task[phase].items():
logs[f'{phase}_{task}_loss'] = l
# calculate statistics for validation data
# detection
if 'detection' in tasks:
gt = np.array(labels['valid']['detection'])
pred = softmax(torch.tensor(scores['valid']['detection'])).numpy()
statistics_classification = get_statistics_binary(gt, pred)
roc_classification = roc_measures(statistics_classification)
ber = roc_classification['best_balanced_error_rate']
logs['detection_valid_balanced_accuracy'] = 1 - ber[0]
logs['detection_valid_balanced_accuracy_thresh'] = ber[1]
pr_classification = pr_measures(statistics_classification)
f1 = pr_classification['best_f1_score']
logs['detection_valid_f1'] = f1[0]
logs['detection_valid_f1_thresh'] = f1[1]
# orientation
if 'orientation' in tasks:
mask = metainfos[phase]['dataset'] == 'orientation'
gt = np.array(labels['valid']['orientation'])[mask]
pred = np.array(scores['valid']['orientation'])[mask]
angle_errors = biternion2deg(pred) - biternion2deg(gt)
# https://stackoverflow.com/questions/1878907/the-smallest-difference-between-2-angles
angle_errors = (angle_errors + 180.0) % 360.0 - 180.0
angle_mse = np.mean(np.abs(angle_errors))
logs['orientation_valid_mae'] = angle_mse
# pose
if 'pose' in tasks:
gt = np.array(labels['valid']['pose'])
pred = np.argmax(np.array(scores['valid']['pose']), axis=-1)
mask = gt != -100
conf = metrics.confusion_matrix(gt[mask], pred[mask],
labels=[0, 1, 2])
class_accuracies = conf.diagonal() / conf.sum(axis=-1)
bal_accuracy = class_accuracies.mean()
logs['pose_valid_balanced_accuracy'] = bal_accuracy
# append epoch for csv logging
logs['epoch'] = epoch
csvlogger.write_logs(logs)
if losses_overall['train'] <= 2*1e-6:
with open(os.path.join(train_dir, 'early_stopping.csv'), 'w') as f:
f.write('epoch,running_loss_train\n')
f.write(f"{epoch},{losses_overall['train']:.10f}")
break
# update loss weights
if args.weight_mode == 'dwa':
weights = get_new_loss_weights_dwa(
cur_weights=weights,
loss_history=weights_loss_history,
tasks=tasks,
momentum=args.weight_mode_dwa_momentum,
t=args.weight_mode_dwa_temperature
)
# all done
print('Finished Training')
if __name__ == '__main__':
main()