-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCleanDCC.m
304 lines (278 loc) · 7.45 KB
/
CleanDCC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
function [T, V, varargout] = CleanDCC(t, v, I, DCC_Freq)
% [T, V, I, DCC_Info] = CleanDCC(t, v, I, DCC_Freq)
% Resamples a voltage trace to a courser sample, in order to reduce
% noise introduced by DCC. Will calculate DCC_Freq if it is not
% specified.
% DCC_Freq is calculated by looking for the dominant fast frequency
% of abs(dv/dt) (because voltage shouldn't change much during the
% DCC period).
% INPUTS:
% -t: Array of times
% -v: Num_t x NumTraces array of voltages
% -I: (OPTIONAL) Num_t x NumTraces array of currents. To
% specify DCC_Freq but not I, set I equal to [].
% -DCC_Freq: (OPTIONAL) the frequency of DCC sampling. If
% DCC_Freq is not specified, the algorithm will automatically
% determine it.
% OUTPUTS:
% -T: Array of times
% -V: Num_T x NumTraces array of voltages
% -I: (OPTIONAL) Num_T x NumTraces array of currents, only
% passed back if I is passed in as non-empty array.
% -DCC_Info: (OPTIONAL) A structure containing DCC information
% .DCC_Freq: The frequency of DCC sampling (in kHz)
% .DCC_Power: The spectrum power at the DCC_Freq
% .f: An array of spectrum frequencies
% .Power: An Array of spectrum powers
DebugClean = false;
if(nargin < 3)
I = [];
elseif(nargin == 4)
T = t(1):(1.0/DCC_Freq):t(end);
V = interp1(t, v, T);
if(length(I) > 0 & nargout > 2)
I = interp1(t, I, T);
end
if(nargout > 2)
DCC_Info.DCC_Freq = DCC_Freq;
DCC_Info.DCC_Power = 0;
DCC_Info.f = [];
DCC_Info.Power = [];
if(length(I) > 0)
if(nargout == 3)
varargout = {I};
else
varargout = {I, DCC_Info};
end
else
varargout = {DCC_Info};
end
end
return
elseif(nargin > 5)
error('Incorrect number of input arguments')
end
%First calculate the derivative and fast-frequency correlogram
NumAutoCorr = find(t - t(1) > 50, 1); %Specify length
[AutoCorr, DV] = GetAutoCorr(t, v, NumAutoCorr);
%Next find the first maximum of autocorrelation (First guess for
% DCC period)
[DCC_Ind, DCC_Corr] = GetAutoCorrMax(AutoCorr, DebugClean, t);
if(isnan(DCC_Ind)) %Couldn't find dominant fast frequency, so no DCC
T = t;
V = v;
if(length(I) > 0 & nargout > 2)
I = interp1(t, I, T);
end
if(nargout > 2)
DCC_Info.DCC_Freq = Inf;
DCC_Info.DCC_Power = 0;
DCC_Info.f = [];
DCC_Info.Power = [];
if(length(I) > 0)
if(nargout == 3)
varargout = {I};
else
varargout = {I, DCC_Info};
end
else
varargout = {DCC_Info};
end
else
varargout = {};
end
return
end
[DCC_Freq, f, Pxx, MaxP] = RefineDCC_Freq(t, DV, DCC_Ind, DCC_Corr, ...
DebugClean);
if(isfinite(DCC_Freq))
%Interpolate T, V, and if necessary, I
T = t(1):(1/DCC_Freq):t(end);
V = interp1(t, v, T);
if(length(I) > 0 & nargout > 2)
I = interp1(t, I, T);
end
else
T = t;
V = v;
end
%temp for debugging:
%if(DCC_Freq < .5 | DCC_Freq > 2 | isnan(DCC_Corr))
% DebugClean = true;
%end
if(DebugClean)
h = NamedFigure('Voltage Trace');
set(h, 'WindowStyle', 'docked');
hold off
plot(t, v, 'r.', 'MarkerSize', 6)
hold on
plot(T, V, 'b.', 'MarkerSize', 6)
hold off
keyboard
end
if(nargout > 2)
DCC_Info.DCC_Freq = DCC_Freq;
DCC_Info.DCC_Power = MaxP;
DCC_Info.f = f;
DCC_Info.Power = Pxx;
if(length(I) > 0)
if(nargout == 3)
varargout = {I};
else
varargout = {I, DCC_Info};
end
else
varargout = {DCC_Info};
end
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [AutoCorr, DV] = GetAutoCorr(t, v, NumAutoCorr)
DV = abs(diff(v));
%DV = abs(PolyDeriv(v, t(2) - t(1)));
[Max1, Ind1] = max(DV);
[MaxDV, TraceInd] = max(Max1);
DV = zscore(DV(:,TraceInd));
MaxLen = 2^20 - 1;
if(length(DV) > MaxLen)
DV = DV((end-MaxLen+1):end);
end
%The places with big changes are the most useful:
DiscardSmall = false;
DiscardSmall2 = false;
if(DiscardSmall)
Ind = find(DV > 3);
if(length(Ind > 1000))
DV2 = DV;
DV(:) = 0;
DV(Ind) = DV2(Ind);
else
Ind = find(DV > 2);
if(length(Ind > 1000))
DV2 = DV;
DV(:) = 0;
DV(Ind) = DV2(Ind);
else
Ind = find(DV > 1);
if(length(Ind > 1000))
DV2 = DV;
DV(:) = 0;
DV(Ind) = DV2(Ind);
end
end
end
end
if(DiscardSmall2)
Ind = find(DV > 0);
DV2 = DV;
DV(:) = 0;
DV(Ind) = DV2(Ind);
end
AutoCorr = xcorr(DV, NumAutoCorr - 1, 'unbiased');
AutoCorr = AutoCorr(NumAutoCorr:end);
AutoCorr = AutoCorr / AutoCorr(1);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [DCC_Ind, DCC_Corr] = GetAutoCorrMax(AutoCorr, DebugClean, t)
FSample = 1.0 / (t(2) - t(1));
[Pxx_Corr, f_Corr] = pmtm(AutoCorr, 7/2, [], FSample);
Ind1 = find(f_Corr >= 0.25, 1);
Ind2 = find(f_Corr > 10, 1) - 1;
if(length(Ind2) == 0)
Ind2 = length(f_Corr);
end
%Pxx_Corr = Pxx_Corr(Ind1:Ind2);
%f_Corr = f_Corr(Ind1:Ind2);
[MaxPow, MaxInd] = max(Pxx_Corr(Ind1:Ind2));
MaxInd = MaxInd + Ind1 - 1;
DCC_Ind = 1 + round(FSample / f_Corr(MaxInd));
if(DCC_Ind == 1)
DCC_Ind = 2;
elseif(DCC_Ind == length(AutoCorr))
DCC_Ind = DCC_Ind - 1;
end
if(AutoCorr(DCC_Ind + 1) > AutoCorr(DCC_Ind))
DCC_Ind = DCC_Ind + 1;
elseif(AutoCorr(DCC_Ind - 1) > AutoCorr(DCC_Ind))
DCC_Ind = DCC_Ind - 1;
end
DCC_Corr = AutoCorr(DCC_Ind);
%temp for debugging:
Interval = t(DCC_Ind) - t(1);
DCC_Freq = 1.0 / Interval;
%if((DCC_Freq < 0.5 | DCC_Freq > 2.0) & ~(DCC_Corr > 0.3))
% DebugClean = true;
%end
if(DebugClean)
h = NamedFigure('CleanDCC Autocorrelation');
set(h, 'WindowStyle', 'docked');
hold off
plot(t(1:length(AutoCorr))-t(1), AutoCorr);
hold on
plot(t(DCC_Ind)-t(1), DCC_Corr, 'ro', 'MarkerFaceColor', 'r')
hold off
xlabel('Time (ms)', 'FontSize', 18);
ylabel('Autocorrelation', 'FontSize', 18);
title('CleanDCC Autocorrelation', 'FontSize', 18);
h = NamedFigure('CleanDCC Autocorrelation Power');
set(h, 'WindowStyle', 'docked');
hold off
plot(f_Corr, Pxx_Corr)
xlabel('Frequency (kHz)', 'FontSize', 18);
ylabel('Power', 'FontSize', 18);
title('CleanDCC Autocorrelation Power', 'FontSize', 18);
end
%Signals to other routines that there is a problem:
if((DCC_Freq < 0.5 | DCC_Freq > 2.0) & ~(DCC_Corr > 0.3))
DCC_Corr = NaN;
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [DCC_Freq, f, Pxx, MaxP] = RefineDCC_Freq(t, DV, DCC_Ind, ...
DCC_Corr, DebugClean)
if(DCC_Ind <= 2) %Don't trust these results
Questionable = true;
DCC_Freq = 1.0; %Good a guess as any...
DCC_Range = 2.0; %Set a wide range
else
Interval = t(DCC_Ind) - t(1);
DCC_Freq = 1.0 / Interval;
if((DCC_Freq < 0.5 | DCC_Freq > 2.0) & ~(DCC_Corr > 0.3))
DCC_Freq = 1.0;
DCC_Range = 2.0;
Questionable = true;
else
Questionable = false;
DCC_Range = 1.25;
end
end
if(DebugClean)
disp(sprintf('Prelim: Interval = %g, DCC_Freq = %g', Interval, DCC_Freq))
end
FSample = 1.0 / (t(2) - t(1));
try
[Pxx, f] = pmtm(DV, 7/2, [], FSample);
catch
DV = DV(1:500000);
[Pxx, f] = pmtm(DV, 7/2, [], FSample);
end
Ind = find(f > DCC_Freq / DCC_Range & f < DCC_Freq * DCC_Range);
[MaxP, Ind2] = max(Pxx(Ind));
DCC_Freq = f(Ind(Ind2));
if(length(DCC_Freq) == 0)
disp('Warning: QUESTIONABLE results in CleanDCC.m')
DCC_Freq = Inf;
end
if(DebugClean)
disp(sprintf('DCC Freq = %g kHz', DCC_Freq))
h = NamedFigure('CleanDCC Power');
set(h, 'WindowStyle', 'docked');
plot(f, Pxx);
hold on
plot(DCC_Freq, MaxP, 'ro')
hold off
xlabel('Frequency (kHz)', 'FontSize', 18)
ylabel('Power', 'FontSize', 18)
title('CleanDCC Power', 'FontSize', 18)
end
return