-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.go
277 lines (234 loc) · 7.2 KB
/
metrics.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
package qpool
import (
"math"
"sort"
"sync"
"time"
)
// tDigestCentroid represents a centroid in the t-digest
type tDigestCentroid struct {
mean float64
count int64
}
// Metrics tracks and stores various performance metrics for the worker pool.
type Metrics struct {
mu sync.RWMutex
WorkerCount int
JobQueueSize int
ActiveWorkers int
LastScale time.Time
ErrorRates map[string]float64
TotalJobTime time.Duration
JobCount int64
CircuitBreakerStates map[string]CircuitState
// Additional suggested metrics
AverageJobLatency time.Duration
P95JobLatency time.Duration
P99JobLatency time.Duration
JobSuccessRate float64
QueueWaitTime time.Duration
ResourceUtilization float64
// Rate limiting metrics
RateLimitHits int64
ThrottledJobs int64
// t-digest fields for percentile calculation
centroids []tDigestCentroid
compression float64
totalWeight int64
maxCentroids int
// SchedulingFailures field to track scheduling timeouts
SchedulingFailures int64
// Additional metrics
FailureCount int64
}
// NewMetrics creates and initializes a new Metrics instance.
func NewMetrics() *Metrics {
return &Metrics{
ErrorRates: make(map[string]float64),
CircuitBreakerStates: make(map[string]CircuitState),
SchedulingFailures: 0,
compression: 100,
maxCentroids: 100,
centroids: make([]tDigestCentroid, 0, 100),
totalWeight: 0,
JobSuccessRate: 1.0,
}
}
// RecordJobExecution records the execution time and success status of a job.
func (m *Metrics) RecordJobExecution(startTime time.Time, success bool) {
m.mu.RLock()
oldTime := m.TotalJobTime
m.mu.RUnlock()
duration := time.Since(startTime)
m.mu.Lock()
m.TotalJobTime = oldTime + duration
m.JobCount++
if success {
m.JobSuccessRate = float64(m.JobCount-m.FailureCount) / float64(m.JobCount)
}
m.mu.Unlock()
// Update latency percentiles in a separate lock to reduce contention
m.updateLatencyPercentiles(duration)
}
// Add updateLatencyPercentiles method
func (m *Metrics) updateLatencyPercentiles(duration time.Duration) {
m.mu.Lock()
defer m.mu.Unlock()
// Update average using existing calculation
m.AverageJobLatency = (m.AverageJobLatency*time.Duration(m.JobCount-1) + duration) / time.Duration(m.JobCount)
// Convert duration to float64 milliseconds for t-digest
value := float64(duration.Milliseconds())
// Find the closest centroid or create a new one
inserted := false
m.totalWeight++
if len(m.centroids) == 0 {
m.centroids = append(m.centroids, tDigestCentroid{mean: value, count: 1})
return
}
// Find insertion point
idx := sort.Search(len(m.centroids), func(i int) bool {
return m.centroids[i].mean >= value
})
// Calculate maximum weight for this point
q := m.calculateQuantile(value)
maxWeight := int64(4 * m.compression * math.Min(q, 1-q))
// Try to merge with existing centroid
if idx < len(m.centroids) && m.centroids[idx].count < maxWeight {
c := &m.centroids[idx]
c.mean = (c.mean*float64(c.count) + value) / float64(c.count+1)
c.count++
inserted = true
} else if idx > 0 && m.centroids[idx-1].count < maxWeight {
c := &m.centroids[idx-1]
c.mean = (c.mean*float64(c.count) + value) / float64(c.count+1)
c.count++
inserted = true
}
// If we couldn't merge, insert new centroid
if !inserted {
newCentroid := tDigestCentroid{mean: value, count: 1}
m.centroids = append(m.centroids, tDigestCentroid{})
copy(m.centroids[idx+1:], m.centroids[idx:])
m.centroids[idx] = newCentroid
}
// Compress if we have too many centroids
if len(m.centroids) > m.maxCentroids {
m.compress()
}
// Update P95 and P99
m.P95JobLatency = time.Duration(m.estimatePercentile(0.95)) * time.Millisecond
m.P99JobLatency = time.Duration(m.estimatePercentile(0.99)) * time.Millisecond
}
func (m *Metrics) calculateQuantile(value float64) float64 {
// Guard against division by zero
if m.totalWeight == 0 {
return 0.0
}
rank := 0.0
for _, c := range m.centroids {
if c.mean < value {
rank += float64(c.count)
}
}
return rank / float64(m.totalWeight)
}
func (m *Metrics) estimatePercentile(p float64) float64 {
if len(m.centroids) == 0 {
return 0
}
targetRank := p * float64(m.totalWeight)
cumulative := 0.0
for i, c := range m.centroids {
cumulative += float64(c.count)
if cumulative >= targetRank {
// Linear interpolation between centroids
if i > 0 {
prev := m.centroids[i-1]
prevCumulative := cumulative - float64(c.count)
// Guard against division by zero
if c.count == 0 {
return prev.mean
}
t := (targetRank - prevCumulative) / float64(c.count)
return prev.mean + t*(c.mean-prev.mean)
}
return c.mean
}
}
return m.centroids[len(m.centroids)-1].mean
}
func (m *Metrics) compress() {
if len(m.centroids) <= 1 {
return
}
// Sort centroids by mean if needed
sort.Slice(m.centroids, func(i, j int) bool {
return m.centroids[i].mean < m.centroids[j].mean
})
// Merge adjacent centroids while respecting size constraints
newCentroids := make([]tDigestCentroid, 0, m.maxCentroids)
current := m.centroids[0]
for i := 1; i < len(m.centroids); i++ {
if current.count+m.centroids[i].count <= int64(m.compression) {
// Merge centroids
totalCount := current.count + m.centroids[i].count
current.mean = (current.mean*float64(current.count) +
m.centroids[i].mean*float64(m.centroids[i].count)) /
float64(totalCount)
current.count = totalCount
} else {
newCentroids = append(newCentroids, current)
current = m.centroids[i]
}
}
newCentroids = append(newCentroids, current)
m.centroids = newCentroids
}
// Add metrics export functionality
func (m *Metrics) ExportMetrics() map[string]interface{} {
m.mu.RLock()
defer m.mu.RUnlock()
return map[string]interface{}{
"worker_count": m.WorkerCount,
"queue_size": m.JobQueueSize,
"success_rate": m.JobSuccessRate,
"avg_latency": m.AverageJobLatency.Milliseconds(),
"p95_latency": m.P95JobLatency.Milliseconds(),
"p99_latency": m.P99JobLatency.Milliseconds(),
"resource_utilization": m.ResourceUtilization,
}
}
func (m *Metrics) RecordJobSuccess(latency time.Duration) {
m.mu.Lock()
defer m.mu.Unlock()
m.JobCount++
m.TotalJobTime += latency
// Guard against division by zero
if m.JobCount > 0 {
m.AverageJobLatency = time.Duration(int64(m.TotalJobTime) / m.JobCount)
m.JobSuccessRate = float64(m.JobCount-m.FailureCount) / float64(m.JobCount)
}
// Update t-digest for percentiles
m.updateLatencyMetrics(latency)
}
// RecordJobFailure records the failure of a job and updates metrics
func (m *Metrics) RecordJobFailure() {
m.mu.Lock()
defer m.mu.Unlock()
m.FailureCount++
// Guard against division by zero
if m.JobCount > 0 {
m.JobSuccessRate = float64(m.JobCount-m.FailureCount) / float64(m.JobCount)
} else {
m.JobSuccessRate = 0.0
}
}
// updateLatencyMetrics updates latency percentiles
func (m *Metrics) updateLatencyMetrics(latency time.Duration) {
// Simple implementation: update P95 and P99 if current latency exceeds them
if latency > m.P99JobLatency {
m.P99JobLatency = latency
} else if latency > m.P95JobLatency {
m.P95JobLatency = latency
}
}