-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVehicleGarage.py
270 lines (247 loc) · 12.6 KB
/
VehicleGarage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from faker import Faker
import numpy as np
import os
import random
import scipy.stats as stats
import Consts
from DriverModel import IDM, TruckPlatoon
from Utils import MixtureModel
from Vehicle import Car, Truck, PlatoonedTruck
class Garage(object):
def __init__(self, seed, short_seed, car_pct, truck_pct, car_length,
truck_length, platoon_chance, min_platoon_length,
max_platoon_length, min_platoon_gap, max_platoon_gap):
self._seed = seed
self._short_seed = short_seed
self._car_pct = car_pct
self._car_velocities = None
self._car_gaps = None
self._car_length = car_length
self._generated_car_velocities = []
self._generated_car_gaps = []
self._truck_pct = truck_pct
self._truck_velocities = None
self._truck_gaps = None
self._truck_length = truck_length
self._generated_truck_velocities = []
self._generated_truck_gaps = []
self._truck_unloaded_weights = None
self._truck_loaded_weights = None
self._truck_weights = None
self._generated_truck_weights = []
self._platoon_pct = platoon_chance
self._min_platoon_length = min_platoon_length
self._max_platoon_length = max_platoon_length
self._platoon_lengths = random.Random(seed)
self._min_platoon_gap = min_platoon_gap
self._max_platoon_gap = max_platoon_gap
self._platoon_gaps = random.Random(seed)
self._platoon_loading = random.Random(seed)
self._random = random.Random(seed)
self._uuid_generator = Faker()
self._uuid_generator.seed_instance(seed)
self._cars = 0
self._trucks = 0
self._truck_platoons = 0
if Consts.DEBUG_MODE:
self._debug_file = open('debug/garage.txt', 'w')
path = 'output/{}/{}{}'
if os.path.isdir(path.format(Consts.BASE_OUTPUT_DIR, self._seed, '')):
counter = 0
while os.path.isdir(path.format(Consts.BASE_OUTPUT_DIR, self._seed, ':{}'.format(counter))):
counter += 1
self.path = path.format(Consts.BASE_OUTPUT_DIR, self._seed, ':{}'.format(counter))
else:
self.path = path.format(Consts.BASE_OUTPUT_DIR, self._seed, '')
def configure_car_velocities(self, car_speed, car_speed_variance, car_speed_dist):
car_min_speed = (1 - (car_speed_variance / 100))
car_max_speed = (1 + (car_speed_variance / 100))
if car_speed_variance > 0 and car_speed_dist == 0:
car_std_speed = ((car_speed * car_max_speed) - (
car_speed * car_min_speed)) / 4
self._car_velocities = stats.truncnorm(
((car_speed * car_min_speed) - car_speed) / car_std_speed,
((car_speed * car_max_speed) - car_speed) / car_std_speed,
loc=car_speed, scale=car_std_speed)
elif car_speed_variance == 0 or car_speed_dist == 1:
self._car_velocities = stats.uniform(
loc=(car_speed * car_min_speed),
scale=(car_speed * car_max_speed) - car_speed)
else:
raise RuntimeError('Could not configure car velocities with the '
'given settings!')
self._car_velocities.random_state = np.random.RandomState(
seed=self._short_seed)
def configure_car_gaps(self, car_gap, car_gap_variance, car_gap_dist):
car_min_gap = (1 - (car_gap_variance / 100))
car_max_gap = (1 + (car_gap_variance / 100))
if car_gap_variance > 0 and car_gap_dist == 0:
car_std_gap = ((car_gap * car_max_gap) - (
car_gap * car_min_gap)) / 4
self._car_gaps = stats.truncnorm(
((car_gap * car_min_gap) - car_gap) / car_std_gap,
((car_gap * car_max_gap) - car_gap) / car_std_gap,
loc=car_gap, scale=car_std_gap
)
elif car_gap_variance == 0 or car_gap_dist == 1:
self._car_gaps = stats.uniform(
loc=(car_gap * car_min_gap),
scale=(car_gap * car_max_gap) - car_gap)
else:
raise RuntimeError('Could not configure car minimum gaps with the '
'given settings!')
self._car_gaps.random_state = np.random.RandomState(
seed=self._short_seed)
def configure_truck_velocities(self, truck_speed, truck_speed_variance, truck_speed_dist):
truck_min_speed = (1 - (truck_speed_variance / 100))
truck_max_speed = (1 + (truck_speed_variance / 100))
if truck_speed_variance > 0 and truck_speed_dist == 0:
truck_std_speed = ((truck_speed * truck_max_speed) - (truck_speed * truck_min_speed)) / 4
self._truck_velocities = stats.truncnorm(
((truck_speed * truck_min_speed) - truck_speed) / truck_std_speed,
((truck_speed * truck_max_speed) - truck_speed) / truck_std_speed,
loc=truck_speed, scale=truck_std_speed)
elif truck_speed_variance == 0 or truck_speed_dist == 1:
self._truck_velocities = stats.uniform(
loc=(truck_speed * truck_min_speed),
scale=(truck_speed * truck_max_speed) - truck_speed)
else:
raise RuntimeError('Could not configure truck velocities with the '
'given settings!')
self._truck_velocities.random_state = np.random.RandomState(
seed=self._short_seed)
def configure_truck_gaps(self, truck_gap, truck_gap_variance, truck_gap_dist):
truck_min_gap = (1 - (truck_gap_variance / 100))
truck_max_gap = (1 + (truck_gap_variance / 100))
if truck_gap_variance > 0 and truck_gap_dist == 0:
truck_std_gap = ((truck_gap * truck_max_gap) - (
truck_gap * truck_min_gap)) / 4
self._truck_gaps = stats.truncnorm(
((truck_gap * truck_min_gap) - truck_gap) / truck_std_gap,
((truck_gap * truck_max_gap) - truck_gap) / truck_std_gap,
loc=truck_gap, scale=truck_std_gap
)
elif truck_gap_variance == 0 or truck_gap_dist == 1:
self._truck_gaps = stats.uniform(
loc=(truck_gap * truck_min_gap),
scale=(truck_gap * truck_max_gap) - truck_gap)
else:
raise RuntimeError('Could not configure truck minimum gaps with '
'the given settings!')
self._truck_gaps.random_state = np.random.RandomState(
seed=self._short_seed)
def configure_truck_weights(self, unloaded_weight, loaded_weight,
unloaded_variance, loaded_variance):
unloaded_min = (1 - (unloaded_variance / 100))
unloaded_max = (1 + (unloaded_variance / 100))
loaded_min = (1 - (loaded_variance / 100))
loaded_max = (1 + (loaded_variance / 100))
if unloaded_variance > 0:
unloaded_std = ((unloaded_weight * unloaded_max) - (unloaded_weight * unloaded_min)) / 4
self._truck_unloaded_weights = stats.truncnorm(
((unloaded_weight * unloaded_min) - unloaded_weight) / unloaded_std,
((unloaded_weight * unloaded_max) - unloaded_weight) / unloaded_std,
loc=unloaded_weight, scale=unloaded_std
)
else:
self._truck_unloaded_weights = stats.uniform(
loc=(unloaded_weight * unloaded_min),
scale=(unloaded_weight * unloaded_max) - unloaded_weight
)
self._truck_unloaded_weights.random_state = np.random.RandomState(
seed=self._short_seed)
if loaded_variance > 0:
loaded_std = ((loaded_weight * loaded_max) - (loaded_weight * loaded_min)) / 4
self._truck_loaded_weights = stats.truncnorm(
((loaded_weight * loaded_min) - loaded_weight) / loaded_std,
((loaded_weight * loaded_max) - loaded_weight) / loaded_std,
loc=loaded_weight, scale=loaded_std
)
else:
self._truck_loaded_weights = stats.uniform(
loc=(loaded_weight * loaded_min),
scale=(loaded_weight * loaded_max) - loaded_weight
)
self._truck_loaded_weights.random_state = np.random.RandomState(
seed=self._short_seed)
self._truck_weights = MixtureModel([self._truck_unloaded_weights,
self._truck_loaded_weights])
self._truck_weights.random_state = np.random.RandomState(
seed=self._short_seed)
def new_vehicle(self):
if self._random.randint(0, 100) < self._car_pct:
vel = float(self._car_velocities.rvs(1)[0])
gap = float(self._car_gaps.rvs(1)[0])
new_vehicle = Car(self._uuid_generator.uuid4(), vel, 0.73, 1.67,
gap, self._car_length, IDM, 2000)
self._cars += 1
self._generated_car_velocities.append(vel)
self._generated_car_gaps.append(gap)
else:
vel = float(self._truck_velocities.rvs(1)[0])
gap = float(self._truck_gaps.rvs(1)[0])
if self._random.randint(0, 100) < self._platoon_pct:
new_vehicle = []
platoon_gap = self._platoon_gaps.uniform(self._min_platoon_gap,
self._max_platoon_gap)
platoon_length = self._platoon_lengths.randint(
self._min_platoon_length, self._max_platoon_length)
platoon_full = bool(self._platoon_loading.getrandbits(1))
for i in range(platoon_length):
if platoon_full:
weight = float(self._truck_loaded_weights.rvs(1)[0])
else:
weight = float(self._truck_unloaded_weights.rvs(1)[0])
new_vehicle.append(
PlatoonedTruck(self._uuid_generator.uuid4(), vel,
0.73, 1.67, gap, self._truck_length,
TruckPlatoon, weight, i == 0,
platoon_gap))
self._trucks += 1
self._truck_platoons += 1
else:
weight = float(self._truck_weights.rvs(1)[0])
new_vehicle = Truck(self._uuid_generator.uuid4(), vel, 0.73,
1.67, gap, self._truck_length, IDM, weight)
self._trucks += 1
self._generated_truck_velocities.append(vel)
self._generated_truck_gaps.append(gap)
self._generated_truck_weights.append(weight)
if Consts.DEBUG_MODE:
if type(new_vehicle) is not list:
self._debug_file.write('{}\n'.format(new_vehicle.__str__()))
else:
self._debug_file.write('[{}]\n'.format(','.join(x.__str__() for x in new_vehicle)))
return new_vehicle
def plot(self):
os.makedirs(self.path, exist_ok=True)
import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams['axes.titlepad'] = 40
f, axarr = plt.subplots(3, 2, squeeze=False)
if self._generated_car_velocities:
axarr[0, 0].hist(self._generated_car_velocities, density=True, ec="k")
axarr[0, 0].set_xlabel('Desired Car Velocity (m/s)')
axarr[0, 0].set_ylabel('Density')
if self._generated_car_gaps:
axarr[0, 1].hist(self._generated_car_gaps, density=True, ec="k")
axarr[0, 1].set_xlabel('Desired Car Minimum Gap (m)')
axarr[0, 1].set_ylabel('Density')
if self._generated_truck_velocities:
axarr[1, 0].hist(self._generated_truck_velocities, density=True, ec="k")
axarr[1, 0].set_xlabel('Desired Truck Velocity (m/s)')
axarr[1, 0].set_ylabel('Density')
if self._generated_truck_gaps:
axarr[1, 1].hist(self._generated_truck_gaps, density=True, ec="k")
axarr[1, 1].set_xlabel('Desired Truck Minimum Gap (m)')
axarr[1, 1].set_ylabel('Density')
if self._generated_truck_weights:
axarr[2, 0].hist(self._generated_truck_weights, density=True, ec="k")
axarr[2, 0].set_xlabel('Truck Wights (m)')
axarr[2, 0].set_ylabel('Density')
f.suptitle('Data from Vehicle Generation', fontsize=12, y=0.99)
plt.subplots_adjust(top=0.85)
plt.tight_layout()
f.set_size_inches(16, 9)
plt.savefig('{}/garage.png'.format(self.path), dpi=300)
plt.close(f)