-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
226 lines (177 loc) · 8.59 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from datetime import datetime
import numpy as np
import time
import os
from random import randint
import datasets
from citylearn.citylearn import CityLearnEnv
import utils
from agents.DT_agent import DTAgent
from agents.ppo_agent import PPOAgent
from agents.sac_agent import SACAgent
from agents.zero_agent import ZeroAgent
from rewards.user_reward import SubmissionReward
"""
This is an edited version of local_evaluation.py provided by the challenge.
"""
class WrapperEnv:
"""
Env to wrap provide Citylearn Env data without providing full env
Preventing attribute access outside the available functions
"""
def __init__(self, env_data):
self.observation_names = env_data['observation_names']
self.action_names = env_data['action_names']
self.observation_space = env_data['observation_space']
self.action_space = env_data['action_space']
self.time_steps = env_data['time_steps']
self.seconds_per_time_step = env_data['seconds_per_time_step']
self.random_seed = env_data['random_seed']
self.buildings_metadata = env_data['buildings_metadata']
self.episode_tracker = env_data['episode_tracker']
def get_metadata(self):
return {'buildings': self.buildings_metadata}
def create_citylearn_env(config, reward_function):
env = CityLearnEnv(config.SCHEMA, reward_function=reward_function)
env_data = dict(
observation_names=env.observation_names,
action_names=env.action_names,
observation_space=env.observation_space,
action_space=env.action_space,
time_steps=env.time_steps,
random_seed=None,
episode_tracker=None,
seconds_per_time_step=None,
buildings_metadata=env.get_metadata()['buildings']
)
wrapper_env = WrapperEnv(env_data)
return env, wrapper_env
def update_power_outage_random_seed(env: CityLearnEnv, random_seed: int) -> CityLearnEnv:
"""Update random seed used in generating power outage signals.
Used to optionally update random seed for stochastic power outage model in all buildings.
Random seeds should be updated before calling :py:meth:`citylearn.citylearn.CityLearnEnv.reset`.
"""
for b in env.buildings:
b.stochastic_power_outage_model.random_seed = random_seed
return env
def evaluate(config):
print("========================= Starting Evaluation =========================")
generate_data = False
file_name = 'test2'
if generate_data:
print('Collecting Data...')
env, wrapper_env = create_citylearn_env(config, SubmissionReward)
# model = SAC.load("my_models/SAC_test\m0_1438_steps.zip")
# agent = SACAgent(wrapper_env, mode='single', single_model=model, save_observations=False)
# agent = SACAgent(wrapper_env, save_observations=True if generate_data else False)
agent = DTAgent(wrapper_env)
agent.set_model_index(0)
env = update_power_outage_random_seed(env, randint(0, 99999))
observations = env.reset()
agent_time_elapsed = 0
step_start = time.perf_counter()
actions = agent.register_reset(observations)
agent_time_elapsed += time.perf_counter() - step_start
episodes_completed = 0
num_steps = 0
interrupted = False
collected_one_non_outage_episode = False
episode_metrics = []
J = 0
action_sum = np.zeros(len(env.buildings) * 3)
dataset = []
reward_data = []
done_data = []
try:
while True:
observations, reward, done, _ = env.step(actions)
if generate_data:
reward_data.append(reward)
done_data.append(done)
J += sum(reward)
action_sum += np.abs(np.array(actions[0]))
utils.print_interactions(actions, reward, observations)
if not done:
step_start = time.perf_counter()
actions = agent.predict(observations)
agent_time_elapsed += time.perf_counter() - step_start
else:
episodes_completed += 1
metrics_df = env.evaluate_citylearn_challenge()
episode_metrics.append(metrics_df)
print(f"Episode complete: {episodes_completed} | Reward: {np.round(J, decimals=2)} "
f"| Average Action: {np.round(action_sum / env.episode_time_steps, decimals=4)}")
print(f"Latest episode metrics: {metrics_df}")
outage_this_episode = not np.isnan(metrics_df['power_outage_normalized_unserved_energy_total']['value'])
print('Outage this episode:', outage_this_episode)
if outage_this_episode:
collect_this_episode = True
elif not collected_one_non_outage_episode:
collect_this_episode = True
collected_one_non_outage_episode = True
else:
collect_this_episode = False
if generate_data and collect_this_episode:
observation_data, action_data = agent.get_obs_and_action_data()
for b in range(len(env.buildings)):
building_obs_data = [np.array(all_buildings_obs[b]) for all_buildings_obs in observation_data]
building_next_obs_data = building_obs_data[1:]
building_next_obs_data.append(building_obs_data[-1])
building_obs_data = np.array(building_obs_data)
building_next_obs_data = np.array(building_next_obs_data)
building_act_data = np.array([all_buildings_act[b] for all_buildings_act in action_data])
building_rew_data = np.array([all_buildings_rew[b] for all_buildings_rew in reward_data])
dict_building_i = {
"observations": building_obs_data,
"next_observations": building_next_obs_data,
"actions": building_act_data,
"rewards": building_rew_data,
"dones": np.array(done_data)
}
print(dict_building_i)
dataset.append(dict_building_i)
J = 0
action_sum = np.zeros(len(env.buildings) * 3)
env = update_power_outage_random_seed(env, randint(0, 99999))
observations = env.reset()
step_start = time.perf_counter()
actions = agent.register_reset(observations)
agent_time_elapsed += time.perf_counter() - step_start
num_steps += 1
if num_steps % 1000 == 0:
print(f"Num Steps: {num_steps}, Num episodes: {episodes_completed}")
if episodes_completed >= config.num_episodes:
break
except KeyboardInterrupt:
print("========================= Stopping Evaluation =========================")
interrupted = True
if not interrupted:
dt_string = datetime.now().strftime("%d.%m.%Y %H:%M:%S")
print(f"======================= Completed: {dt_string} =======================")
print(agent.model_info, SubmissionReward.__name__)
print(f"Total agent time: {np.round(agent_time_elapsed, decimals=2)}s")
utils.print_metrics(episode_metrics)
agent.print_normalizations()
if generate_data:
print("Amount Of Sequences: ", len(dataset))
total_values = (2 * len(dataset[0]['observations'][0]) + len(dataset[0]['actions'][0]) + 2) * len(dataset[0]['actions']) * len(dataset)
print("Total values to store: ", total_values)
file_info = f"_{len(dataset)}"
file_extension = ".pkl"
file_path = "./data/DT_data/" + file_name + file_info + file_extension
# Create a Dataset object from the list of dict and save it in file_path
datasets.Dataset.from_dict({k: [s[k] for s in dataset] for k in dataset[0].keys()}).save_to_disk(file_path)
print("========================= Writing Completed ============================")
print("==> Data saved in", file_path, utils.get_string_file_size(file_path))
# utils.check_data_structure(file_path)
if __name__ == '__main__':
class Config:
data_dir = './data/'
SCHEMA = os.path.join(data_dir, 'schemas/warm_up/schema.json')
num_episodes = 3
# Power outage probability:
# p(outage|day) = 0.393% (modified to 1.97%)
# p(outage>=1|month) = 11.15% (modified to 44.90%)
# To have at least one outage in the evaluation with 95% probability: episodes >= 26 (modified to >=6)
config_data = Config()
evaluate(config_data)