-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path317_cluster_davies_bouldin.py
65 lines (50 loc) · 2.44 KB
/
317_cluster_davies_bouldin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import argparse
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import davies_bouldin_score
import numpy as np
def determine_optimal_clusters(data, min_k=2, max_k=10):
db_scores = []
print("For Davis-Bouldin Index, lower values are better.")
for k in range(min_k, max_k + 1):
kmeans = KMeans(n_clusters=k, random_state=42, n_init='auto')
labels = kmeans.fit_predict(data)
db_index = davies_bouldin_score(data, labels)
db_scores.append((k, db_index))
print(f"Davies-Bouldin Index for k = {k}: {db_index}")
optimal_k = min(db_scores, key=lambda x: x[1])[0] # Lower Davies-Bouldin Index is better
print("Optimal number of clusters:", optimal_k)
return optimal_k
def main():
parser = argparse.ArgumentParser(description="Cluster data and assign clusters using Davies-Bouldin Index.")
parser.add_argument("--input-file", required=True, help="Path to the input Excel file.")
args = parser.parse_args()
# Load Excel file
df = pd.read_excel(args.input_file)
# only keep rows with unique columns of 'park_day' and 'avg_wait_this_day'
df = df.drop_duplicates(subset=['park_day', 'avg_wait_this_day'])
if 'avg_wait_this_day' not in df.columns:
raise ValueError("The input file must contain an 'avg_wait_this_day' column.")
# Handle missing values
if df['avg_wait_this_day'].isna().any():
print("Warning: Missing values detected in 'avg_wait_this_day'. Filling with column mean.")
#df['avg_wait_this_day'].fillna(df['avg_wait_this_day'].mean(), inplace=True)
df = df.copy()
df['avg_wait_this_day'] = df['avg_wait_this_day'].fillna(df['avg_wait_this_day'].mean())
# round avg_wait_this_day to the nearest whole integer
df['avg_wait_this_day'] = df['avg_wait_this_day'].round(0)
# Extract the data for clustering
data = df[['avg_wait_this_day']].to_numpy()
# Determine the optimal number of clusters
optimal_k = determine_optimal_clusters(data)
print("Exiting early.")
return
# Perform clustering with the optimal number of clusters
kmeans = KMeans(n_clusters=optimal_k, random_state=42, n_init='auto')
df['cluster'] = kmeans.fit_predict(data)
# Save the clustered data
output_file = args.input_file.replace('.xlsx', '_clustered.xlsx')
df.to_excel(output_file, index=False)
print(f"Clustered data saved to {output_file}")
if __name__ == "__main__":
main()