-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataloader.py
50 lines (43 loc) · 1.56 KB
/
Dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import numpy as np
from torch.utils.data.dataset import Dataset
from glob import glob
import torchvision.transforms as transforms
from PIL import Image
from scipy import ndimage
import torch
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
class MyDataset(Dataset):
def __init__(self, DATASET_DIR, transform=None):
self.transform = transform
self.cover_dir = DATASET_DIR
self.cover_list = [x.split('/')[-1] for x in glob(self.cover_dir+'/*')]
assert len(self.cover_list) != 0, "cover_dir is empty"
def __len__(self):
return len(self.cover_list)
def __getitem__(self, idx):
file_index = int(idx)
cover_path = os.path.join(self.cover_dir, self.cover_list[file_index])
cover_data = Image.open(cover_path)
cover_nd = np.array(cover_data)
cover_trans = cover_nd
if cover_trans.max() > 1:
cover_trans = cover_trans / 255
if self.transform:
data = self.transform(cover_data)
sample = {'img': data}
return sample
if __name__ == '__main__':
DIR = '/data/BossClf/BOSSBase_256'
transform = transforms.Compose([
transforms.ToTensor(),
])
data = MyDataset(DATASET_DIR=DIR, transform=transform)
train_loader = torch.utils.data.DataLoader(data, batch_size=16, num_workers=1, shuffle=True)
for batch_num, sample in enumerate(train_loader):
#print(sample['img'].shape)
img = sample['img']
img_shape = list(img.size())
img = img.reshape(img_shape[0] * img_shape[1], *img_shape[2:])
print(img.shape)