forked from uvahotspot/HotSpot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtemperature.c
893 lines (827 loc) · 40.6 KB
/
temperature.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _MSC_VER
#define strcasecmp _stricmp
#define strncasecmp _strnicmp
#else
#include <strings.h>
#endif
#include <math.h>
#include "temperature.h"
#include "temperature_block.h"
#include "temperature_grid.h"
#include "flp.h"
#include "util.h"
/* default thermal configuration parameters */
thermal_config_t default_thermal_config(void)
{
thermal_config_t config;
/* chip specs */
config.t_chip = 0.15e-3; /* chip thickness in meters */
config.k_chip = 100.0; /* chip thermal conductivity in W/(m-K) */
config.p_chip = 1.75e6; /* chip specific heat in J/(m^3-K) */
/* temperature threshold for DTM (Kelvin)*/
config.thermal_threshold = 81.8 + 273.15;
/* heat sink specs */
config.c_convec = 140.4; /* convection capacitance in J/K */
config.r_convec = 0.1; /* convection resistance in K/W */
config.s_sink = 60e-3; /* heatsink side in m */
config.t_sink = 6.9e-3; /* heatsink thickness in m */
config.k_sink = 400.0; /* heatsink thermal conductivity in W/(m-K) */
config.p_sink = 3.55e6; /* heatsink specific heat in J/(m^3-K) */
/* heat spreader specs */
config.s_spreader = 30e-3; /* spreader side in m */
config.t_spreader = 1e-3; /* spreader thickness in m */
config.k_spreader = 400.0; /* heat spreader thermal conductivity in W/(m-K) */
config.p_spreader = 3.55e6; /* heat spreader specific heat in J/(m^3-K) */
/* interface material specs */
config.t_interface = 20e-6; /* interface material thickness in m */
config.k_interface = 4.0; /* interface material thermal conductivity in W/(m-K) */
config.p_interface = 4.0e6; /* interface material specific heat in J/(m^3-K) */
/* secondary heat transfer path */
config.model_secondary = FALSE;
config.r_convec_sec = 1.0;
config.c_convec_sec = 140.4; //FIXME! need updated value.
config.n_metal = 8;
config.t_metal = 10.0e-6;
config.t_c4 = 0.0001;
config.s_c4 = 20.0e-6;
config.n_c4 = 400;
config.s_sub = 0.021;
config.t_sub = 0.001;
config.s_solder = 0.021;
config.t_solder = 0.00094;
config.s_pcb = 0.1;
config.t_pcb = 0.002;
/* others */
config.ambient = 45 + 273.15; /* in kelvin */
/* initial temperatures from file */
strcpy(config.init_file, NULLFILE);
config.init_temp = 60 + 273.15; /* in Kelvin */
/* steady state temperatures to file */
strcpy(config.steady_file, NULLFILE);
/* 3.33 us sampling interval = 10K cycles at 3GHz */
config.sampling_intvl = 3.333e-6;
config.base_proc_freq = 3e9; /* base processor frequency in Hz */
config.dtm_used = FALSE; /* set accordingly */
config.leakage_used = 0;
config.leakage_mode = 0;
config.package_model_used = 0;
strcpy(config.package_config_file, NULLFILE);
/* set block model as default */
strcpy(config.model_type, BLOCK_MODEL_STR);
/* block model specific parameters */
config.block_omit_lateral = FALSE; /* omit lateral chip resistances? */
/* grid model specific parameters */
config.grid_rows = 64; /* grid resolution - no. of rows */
config.grid_cols = 64; /* grid resolution - no. of cols */
/* layer configuration from file */
strcpy(config.grid_layer_file, NULLFILE);
/* output steady state grid temperatures apart from block temperatures */
strcpy(config.grid_steady_file, NULLFILE);
/*
* mapping mode between block and grid models.
* default: use the temperature of the center
* grid cell as that of the entire block
*/
strcpy(config.grid_map_mode, GRID_CENTER_STR);
config.detailed_3D_used = 0; //BU_3D: by default detailed 3D modeling is disabled.
return config;
}
/*
* parse a table of name-value string pairs and add the configuration
* parameters to 'config'
*/
void thermal_config_add_from_strs(thermal_config_t *config, str_pair *table, int size)
{
int idx;
if ((idx = get_str_index(table, size, "t_chip")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->t_chip) != 1)
fatal("invalid format for configuration parameter t_chip\n");
if ((idx = get_str_index(table, size, "k_chip")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->k_chip) != 1)
fatal("invalid format for configuration parameter k_chip\n");
if ((idx = get_str_index(table, size, "p_chip")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->p_chip) != 1)
fatal("invalid format for configuration parameter p_chip\n");
if ((idx = get_str_index(table, size, "thermal_threshold")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->thermal_threshold) != 1)
fatal("invalid format for configuration parameter thermal_threshold\n");
if ((idx = get_str_index(table, size, "c_convec")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->c_convec) != 1)
fatal("invalid format for configuration parameter c_convec\n");
if ((idx = get_str_index(table, size, "r_convec")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->r_convec) != 1)
fatal("invalid format for configuration parameter r_convec\n");
if ((idx = get_str_index(table, size, "s_sink")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->s_sink) != 1)
fatal("invalid format for configuration parameter s_sink\n");
if ((idx = get_str_index(table, size, "t_sink")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->t_sink) != 1)
fatal("invalid format for configuration parameter t_sink\n");
if ((idx = get_str_index(table, size, "k_sink")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->k_sink) != 1)
fatal("invalid format for configuration parameter k_sink\n");
if ((idx = get_str_index(table, size, "p_sink")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->p_sink) != 1)
fatal("invalid format for configuration parameter p_sink\n");
if ((idx = get_str_index(table, size, "s_spreader")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->s_spreader) != 1)
fatal("invalid format for configuration parameter s_spreader\n");
if ((idx = get_str_index(table, size, "t_spreader")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->t_spreader) != 1)
fatal("invalid format for configuration parameter t_spreader\n");
if ((idx = get_str_index(table, size, "k_spreader")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->k_spreader) != 1)
fatal("invalid format for configuration parameter k_spreader\n");
if ((idx = get_str_index(table, size, "p_spreader")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->p_spreader) != 1)
fatal("invalid format for configuration parameter p_spreader\n");
if ((idx = get_str_index(table, size, "t_interface")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->t_interface) != 1)
fatal("invalid format for configuration parameter t_interface\n");
if ((idx = get_str_index(table, size, "k_interface")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->k_interface) != 1)
fatal("invalid format for configuration parameter k_interface\n");
if ((idx = get_str_index(table, size, "p_interface")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->p_interface) != 1)
fatal("invalid format for configuration parameter p_interface\n");
if ((idx = get_str_index(table, size, "model_secondary")) >= 0)
if(sscanf(table[idx].value, "%d", &config->model_secondary) != 1)
fatal("invalid format for configuration parameter model_secondary\n");
if ((idx = get_str_index(table, size, "r_convec_sec")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->r_convec_sec) != 1)
fatal("invalid format for configuration parameter r_convec_sec\n");
if ((idx = get_str_index(table, size, "c_convec_sec")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->c_convec_sec) != 1)
fatal("invalid format for configuration parameter c_convec_sec\n");
if ((idx = get_str_index(table, size, "n_metal")) >= 0)
if(sscanf(table[idx].value, "%d", &config->n_metal) != 1)
fatal("invalid format for configuration parameter n_metal\n");
if ((idx = get_str_index(table, size, "t_metal")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->t_metal) != 1)
fatal("invalid format for configuration parameter t_metal\n");
if ((idx = get_str_index(table, size, "t_c4")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->t_c4) != 1)
fatal("invalid format for configuration parameter t_c4\n");
if ((idx = get_str_index(table, size, "s_c4")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->s_c4) != 1)
fatal("invalid format for configuration parameter s_c4\n");
if ((idx = get_str_index(table, size, "n_c4")) >= 0)
if(sscanf(table[idx].value, "%d", &config->n_c4) != 1)
fatal("invalid format for configuration parameter n_c4\n");
if ((idx = get_str_index(table, size, "s_sub")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->s_sub) != 1)
fatal("invalid format for configuration parameter s_sub\n");
if ((idx = get_str_index(table, size, "t_sub")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->t_sub) != 1)
fatal("invalid format for configuration parameter t_sub\n");
if ((idx = get_str_index(table, size, "s_solder")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->s_solder) != 1)
fatal("invalid format for configuration parameter s_solder\n");
if ((idx = get_str_index(table, size, "t_solder")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->t_solder) != 1)
fatal("invalid format for configuration parameter t_solder\n");
if ((idx = get_str_index(table, size, "s_pcb")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->s_pcb) != 1)
fatal("invalid format for configuration parameter s_pcb\n");
if ((idx = get_str_index(table, size, "t_pcb")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->t_pcb) != 1)
fatal("invalid format for configuration parameter t_pcb\n");
if ((idx = get_str_index(table, size, "ambient")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->ambient) != 1)
fatal("invalid format for configuration parameter ambient\n");
if ((idx = get_str_index(table, size, "init_file")) >= 0)
if(sscanf(table[idx].value, "%s", config->init_file) != 1)
fatal("invalid format for configuration parameter init_file\n");
if ((idx = get_str_index(table, size, "init_temp")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->init_temp) != 1)
fatal("invalid format for configuration parameter init_temp\n");
if ((idx = get_str_index(table, size, "steady_file")) >= 0)
if(sscanf(table[idx].value, "%s", config->steady_file) != 1)
fatal("invalid format for configuration parameter steady_file\n");
if ((idx = get_str_index(table, size, "sampling_intvl")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->sampling_intvl) != 1)
fatal("invalid format for configuration parameter sampling_intvl\n");
if ((idx = get_str_index(table, size, "base_proc_freq")) >= 0)
if(sscanf(table[idx].value, "%lf", &config->base_proc_freq) != 1)
fatal("invalid format for configuration parameter base_proc_freq\n");
if ((idx = get_str_index(table, size, "dtm_used")) >= 0)
if(sscanf(table[idx].value, "%d", &config->dtm_used) != 1)
fatal("invalid format for configuration parameter dtm_used\n");
if ((idx = get_str_index(table, size, "model_type")) >= 0)
if(sscanf(table[idx].value, "%s", config->model_type) != 1)
fatal("invalid format for configuration parameter model_type\n");
if ((idx = get_str_index(table, size, "leakage_used")) >= 0)
if(sscanf(table[idx].value, "%d", &config->leakage_used) != 1)
fatal("invalid format for configuration parameter leakage_used\n");
if ((idx = get_str_index(table, size, "leakage_mode")) >= 0)
if(sscanf(table[idx].value, "%d", &config->leakage_mode) != 1)
fatal("invalid format for configuration parameter leakage_mode\n");
if ((idx = get_str_index(table, size, "package_model_used")) >= 0)
if(sscanf(table[idx].value, "%d", &config->package_model_used) != 1)
fatal("invalid format for configuration parameter package_model_used\n");
if ((idx = get_str_index(table, size, "package_config_file")) >= 0)
if(sscanf(table[idx].value, "%s", config->package_config_file) != 1)
fatal("invalid format for configuration parameter package_config_file\n");
if ((idx = get_str_index(table, size, "block_omit_lateral")) >= 0)
if(sscanf(table[idx].value, "%d", &config->block_omit_lateral) != 1)
fatal("invalid format for configuration parameter block_omit_lateral\n");
if ((idx = get_str_index(table, size, "grid_rows")) >= 0)
if(sscanf(table[idx].value, "%d", &config->grid_rows) != 1)
fatal("invalid format for configuration parameter grid_rows\n");
if ((idx = get_str_index(table, size, "grid_cols")) >= 0)
if(sscanf(table[idx].value, "%d", &config->grid_cols) != 1)
fatal("invalid format for configuration parameter grid_cols\n");
if ((idx = get_str_index(table, size, "grid_layer_file")) >= 0)
if(sscanf(table[idx].value, "%s", config->grid_layer_file) != 1)
fatal("invalid format for configuration parameter grid_layer_file\n");
if ((idx = get_str_index(table, size, "grid_steady_file")) >= 0)
if(sscanf(table[idx].value, "%s", config->grid_steady_file) != 1)
fatal("invalid format for configuration parameter grid_steady_file\n");
if ((idx = get_str_index(table, size, "grid_map_mode")) >= 0)
if(sscanf(table[idx].value, "%s", config->grid_map_mode) != 1)
fatal("invalid format for configuration parameter grid_map_mode\n");
if ((config->t_chip <= 0) || (config->s_sink <= 0) || (config->t_sink <= 0) ||
(config->s_spreader <= 0) || (config->t_spreader <= 0) ||
(config->t_interface <= 0))
fatal("chip and package dimensions should be greater than zero\n");
if ((config->t_metal <= 0) || (config->n_metal <= 0) || (config->t_c4 <= 0) ||
(config->s_c4 <= 0) || (config->n_c4 <= 0) || (config->s_sub <= 0) || (config->t_sub <= 0) ||
(config->s_solder <= 0) || (config->t_solder <= 0) || (config->s_pcb <= 0) ||
(config->t_solder <= 0) || (config->r_convec_sec <= 0) || (config->c_convec_sec <= 0))
fatal("secondary heat tranfer layer dimensions should be greater than zero\n");
/* leakage iteration is not supported in transient mode in this release */
if (config->leakage_used == 1) {
printf("Warning: transient leakage iteration is not supported in this release...\n");
printf(" ...all transient results are without thermal-leakage loop.\n");
}
if ((config->model_secondary == 1) && (!strcasecmp(config->model_type, BLOCK_MODEL_STR)))
fatal("secondary heat tranfer path is supported only in the grid mode\n");
if ((config->thermal_threshold < 0) || (config->c_convec < 0) ||
(config->r_convec < 0) || (config->ambient < 0) ||
(config->base_proc_freq <= 0) || (config->sampling_intvl <= 0))
fatal("invalid thermal simulation parameters\n");
if (strcasecmp(config->model_type, BLOCK_MODEL_STR) &&
strcasecmp(config->model_type, GRID_MODEL_STR))
fatal("invalid model type. use 'block' or 'grid'\n");
if(config->grid_rows <= 0 || config->grid_cols <= 0)
fatal("grid rows and columns should both be greater than zero\n");
if (strcasecmp(config->grid_map_mode, GRID_AVG_STR) &&
strcasecmp(config->grid_map_mode, GRID_MIN_STR) &&
strcasecmp(config->grid_map_mode, GRID_MAX_STR) &&
strcasecmp(config->grid_map_mode, GRID_CENTER_STR))
fatal("invalid mapping mode. use 'avg', 'min', 'max' or 'center'\n");
}
/*
* convert config into a table of name-value pairs. returns the no.
* of parameters converted
*/
int thermal_config_to_strs(thermal_config_t *config, str_pair *table, int max_entries)
{
if (max_entries < 49)
fatal("not enough entries in table\n");
sprintf(table[0].name, "t_chip");
sprintf(table[1].name, "k_chip");
sprintf(table[2].name, "p_chip");
sprintf(table[3].name, "thermal_threshold");
sprintf(table[4].name, "c_convec");
sprintf(table[5].name, "r_convec");
sprintf(table[6].name, "s_sink");
sprintf(table[7].name, "t_sink");
sprintf(table[8].name, "k_sink");
sprintf(table[9].name, "p_sink");
sprintf(table[10].name, "s_spreader");
sprintf(table[11].name, "t_spreader");
sprintf(table[12].name, "k_spreader");
sprintf(table[13].name, "p_spreader");
sprintf(table[14].name, "t_interface");
sprintf(table[15].name, "k_interface");
sprintf(table[16].name, "p_interface");
sprintf(table[17].name, "model_secondary");
sprintf(table[18].name, "r_convec_sec");
sprintf(table[19].name, "c_convec_sec");
sprintf(table[20].name, "n_metal");
sprintf(table[21].name, "t_metal");
sprintf(table[22].name, "t_c4");
sprintf(table[23].name, "s_c4");
sprintf(table[24].name, "n_c4");
sprintf(table[25].name, "s_sub");
sprintf(table[26].name, "t_sub");
sprintf(table[27].name, "s_solder");
sprintf(table[28].name, "t_solder");
sprintf(table[29].name, "s_pcb");
sprintf(table[30].name, "t_pcb");
sprintf(table[31].name, "ambient");
sprintf(table[32].name, "init_file");
sprintf(table[33].name, "init_temp");
sprintf(table[34].name, "steady_file");
sprintf(table[35].name, "sampling_intvl");
sprintf(table[36].name, "base_proc_freq");
sprintf(table[37].name, "dtm_used");
sprintf(table[38].name, "model_type");
sprintf(table[39].name, "leakage_used");
sprintf(table[40].name, "leakage_mode");
sprintf(table[41].name, "package_model_used");
sprintf(table[42].name, "package_config_file");
sprintf(table[43].name, "block_omit_lateral");
sprintf(table[44].name, "grid_rows");
sprintf(table[45].name, "grid_cols");
sprintf(table[46].name, "grid_layer_file");
sprintf(table[47].name, "grid_steady_file");
sprintf(table[48].name, "grid_map_mode");
sprintf(table[0].value, "%lg", config->t_chip);
sprintf(table[1].value, "%lg", config->k_chip);
sprintf(table[2].value, "%lg", config->p_chip);
sprintf(table[3].value, "%lg", config->thermal_threshold);
sprintf(table[4].value, "%lg", config->c_convec);
sprintf(table[5].value, "%lg", config->r_convec);
sprintf(table[6].value, "%lg", config->s_sink);
sprintf(table[7].value, "%lg", config->t_sink);
sprintf(table[8].value, "%lg", config->k_sink);
sprintf(table[9].value, "%lg", config->p_sink);
sprintf(table[10].value, "%lg", config->s_spreader);
sprintf(table[11].value, "%lg", config->t_spreader);
sprintf(table[12].value, "%lg", config->k_spreader);
sprintf(table[13].value, "%lg", config->p_spreader);
sprintf(table[14].value, "%lg", config->t_interface);
sprintf(table[15].value, "%lg", config->k_interface);
sprintf(table[16].value, "%lg", config->p_interface);
sprintf(table[17].value, "%d", config->model_secondary);
sprintf(table[18].value, "%lg", config->r_convec_sec);
sprintf(table[19].value, "%lg", config->c_convec_sec);
sprintf(table[20].value, "%d", config->n_metal);
sprintf(table[21].value, "%lg", config->t_metal);
sprintf(table[22].value, "%lg", config->t_c4);
sprintf(table[23].value, "%lg", config->s_c4);
sprintf(table[24].value, "%d", config->n_c4);
sprintf(table[25].value, "%lg", config->s_sub);
sprintf(table[26].value, "%lg", config->t_sub);
sprintf(table[27].value, "%lg", config->s_solder);
sprintf(table[28].value, "%lg", config->t_solder);
sprintf(table[29].value, "%lg", config->s_pcb);
sprintf(table[30].value, "%lg", config->t_pcb);
sprintf(table[31].value, "%lg", config->ambient);
sprintf(table[32].value, "%s", config->init_file);
sprintf(table[33].value, "%lg", config->init_temp);
sprintf(table[34].value, "%s", config->steady_file);
sprintf(table[35].value, "%lg", config->sampling_intvl);
sprintf(table[36].value, "%lg", config->base_proc_freq);
sprintf(table[37].value, "%d", config->dtm_used);
sprintf(table[38].value, "%s", config->model_type);
sprintf(table[39].value, "%d", config->leakage_used);
sprintf(table[40].value, "%d", config->leakage_mode);
sprintf(table[41].value, "%d", config->package_model_used);
sprintf(table[42].value, "%s", config->package_config_file);
sprintf(table[43].value, "%d", config->block_omit_lateral);
sprintf(table[44].value, "%d", config->grid_rows);
sprintf(table[45].value, "%d", config->grid_cols);
sprintf(table[46].value, "%s", config->grid_layer_file);
sprintf(table[47].value, "%s", config->grid_steady_file);
sprintf(table[48].value, "%s", config->grid_map_mode);
return 49;
}
/* package parameter routines */
void populate_package_R(package_RC_t *p, thermal_config_t *config, double width, double height)
{
double s_spreader = config->s_spreader;
double t_spreader = config->t_spreader;
double s_sink = config->s_sink;
double t_sink = config->t_sink;
double r_convec = config->r_convec;
double s_sub = config->s_sub;
double t_sub = config->t_sub;
double s_solder = config->s_solder;
double t_solder = config->t_solder;
double s_pcb = config->s_pcb;
double t_pcb = config->t_pcb;
double r_convec_sec = config->r_convec_sec;
double k_sink = config->k_sink;
double k_spreader = config->k_spreader;
/* lateral R's of spreader and sink */
p->r_sp1_x = getr(k_spreader, (s_spreader-width)/4.0, (s_spreader+3*height)/4.0 * t_spreader);
p->r_sp1_y = getr(k_spreader, (s_spreader-height)/4.0, (s_spreader+3*width)/4.0 * t_spreader);
p->r_hs1_x = getr(k_sink, (s_spreader-width)/4.0, (s_spreader+3*height)/4.0 * t_sink);
p->r_hs1_y = getr(k_sink, (s_spreader-height)/4.0, (s_spreader+3*width)/4.0 * t_sink);
p->r_hs2_x = getr(k_sink, (s_spreader-width)/4.0, (3*s_spreader+height)/4.0 * t_sink);
p->r_hs2_y = getr(k_sink, (s_spreader-height)/4.0, (3*s_spreader+width)/4.0 * t_sink);
p->r_hs = getr(k_sink, (s_sink-s_spreader)/4.0, (s_sink+3*s_spreader)/4.0 * t_sink);
/* vertical R's of spreader and sink */
p->r_sp_per_x = getr(k_spreader, t_spreader, (s_spreader+height) * (s_spreader-width) / 4.0);
p->r_sp_per_y = getr(k_spreader, t_spreader, (s_spreader+width) * (s_spreader-height) / 4.0);
p->r_hs_c_per_x = getr(k_sink, t_sink, (s_spreader+height) * (s_spreader-width) / 4.0);
p->r_hs_c_per_y = getr(k_sink, t_sink, (s_spreader+width) * (s_spreader-height) / 4.0);
p->r_hs_per = getr(k_sink, t_sink, (s_sink*s_sink - s_spreader*s_spreader) / 4.0);
/* vertical R's to ambient (divide r_convec proportional to area) */
p->r_amb_c_per_x = r_convec * (s_sink * s_sink) / ((s_spreader+height) * (s_spreader-width) / 4.0);
p->r_amb_c_per_y = r_convec * (s_sink * s_sink) / ((s_spreader+width) * (s_spreader-height) / 4.0);
p->r_amb_per = r_convec * (s_sink * s_sink) / ((s_sink*s_sink - s_spreader*s_spreader) / 4.0);
/* lateral R's of package substrate, solder and PCB */
p->r_sub1_x = getr(K_SUB, (s_sub-width)/4.0, (s_sub+3*height)/4.0 * t_sub);
p->r_sub1_y = getr(K_SUB, (s_sub-height)/4.0, (s_sub+3*width)/4.0 * t_sub);
p->r_solder1_x = getr(K_SOLDER, (s_solder-width)/4.0, (s_solder+3*height)/4.0 * t_solder);
p->r_solder1_y = getr(K_SOLDER, (s_solder-height)/4.0, (s_solder+3*width)/4.0 * t_solder);
p->r_pcb1_x = getr(K_PCB, (s_solder-width)/4.0, (s_solder+3*height)/4.0 * t_pcb);
p->r_pcb1_y = getr(K_PCB, (s_solder-height)/4.0, (s_solder+3*width)/4.0 * t_pcb);
p->r_pcb2_x = getr(K_PCB, (s_solder-width)/4.0, (3*s_solder+height)/4.0 * t_pcb);
p->r_pcb2_y = getr(K_PCB, (s_solder-height)/4.0, (3*s_solder+width)/4.0 * t_pcb);
p->r_pcb = getr(K_PCB, (s_pcb-s_solder)/4.0, (s_pcb+3*s_solder)/4.0 * t_pcb);
/* vertical R's of package substrate, solder balls and PCB */
p->r_sub_per_x = getr(K_SUB, t_sub, (s_sub+height) * (s_sub-width) / 4.0);
p->r_sub_per_y = getr(K_SUB, t_sub, (s_sub+width) * (s_sub-height) / 4.0);
p->r_solder_per_x = getr(K_SOLDER, t_solder, (s_solder+height) * (s_solder-width) / 4.0);
p->r_solder_per_y = getr(K_SOLDER, t_solder, (s_solder+width) * (s_solder-height) / 4.0);
p->r_pcb_c_per_x = getr(K_PCB, t_pcb, (s_solder+height) * (s_solder-width) / 4.0);
p->r_pcb_c_per_y = getr(K_PCB, t_pcb, (s_solder+width) * (s_solder-height) / 4.0);
p->r_pcb_per = getr(K_PCB, t_pcb, (s_pcb*s_pcb - s_solder*s_solder) / 4.0);
/* vertical R's to ambient at PCB (divide r_convec_sec proportional to area) */
p->r_amb_sec_c_per_x = r_convec_sec * (s_pcb * s_pcb) / ((s_solder+height) * (s_solder-width) / 4.0);
p->r_amb_sec_c_per_y = r_convec_sec * (s_pcb * s_pcb) / ((s_solder+width) * (s_solder-height) / 4.0);
p->r_amb_sec_per = r_convec_sec * (s_pcb * s_pcb) / ((s_pcb*s_pcb - s_solder*s_solder) / 4.0);
}
void populate_package_C(package_RC_t *p, thermal_config_t *config, double width, double height)
{
double s_spreader = config->s_spreader;
double t_spreader = config->t_spreader;
double s_sink = config->s_sink;
double t_sink = config->t_sink;
double c_convec = config->c_convec;
double s_sub = config->s_sub;
double t_sub = config->t_sub;
double s_solder = config->s_solder;
double t_solder = config->t_solder;
double s_pcb = config->s_pcb;
double t_pcb = config->t_pcb;
double c_convec_sec = config->c_convec_sec;
double p_sink = config->p_sink;
double p_spreader = config->p_spreader;
/* vertical C's of spreader and sink */
p->c_sp_per_x = getcap(p_spreader, t_spreader, (s_spreader+height) * (s_spreader-width) / 4.0);
p->c_sp_per_y = getcap(p_spreader, t_spreader, (s_spreader+width) * (s_spreader-height) / 4.0);
p->c_hs_c_per_x = getcap(p_sink, t_sink, (s_spreader+height) * (s_spreader-width) / 4.0);
p->c_hs_c_per_y = getcap(p_sink, t_sink, (s_spreader+width) * (s_spreader-height) / 4.0);
p->c_hs_per = getcap(p_sink, t_sink, (s_sink*s_sink - s_spreader*s_spreader) / 4.0);
/* vertical C's to ambient (divide c_convec proportional to area) */
p->c_amb_c_per_x = C_FACTOR * c_convec / (s_sink * s_sink) * ((s_spreader+height) * (s_spreader-width) / 4.0);
p->c_amb_c_per_y = C_FACTOR * c_convec / (s_sink * s_sink) * ((s_spreader+width) * (s_spreader-height) / 4.0);
p->c_amb_per = C_FACTOR * c_convec / (s_sink * s_sink) * ((s_sink*s_sink - s_spreader*s_spreader) / 4.0);
/* vertical C's of package substrate, solder balls, and PCB */
p->c_sub_per_x = getcap(SPEC_HEAT_SUB, t_sub, (s_sub+height) * (s_sub-width) / 4.0);
p->c_sub_per_y = getcap(SPEC_HEAT_SUB, t_sub, (s_sub+width) * (s_sub-height) / 4.0);
p->c_solder_per_x = getcap(SPEC_HEAT_SOLDER, t_solder, (s_solder+height) * (s_solder-width) / 4.0);
p->c_solder_per_y = getcap(SPEC_HEAT_SOLDER, t_solder, (s_solder+width) * (s_solder-height) / 4.0);
p->c_pcb_c_per_x = getcap(SPEC_HEAT_PCB, t_pcb, (s_solder+height) * (s_solder-width) / 4.0);
p->c_pcb_c_per_y = getcap(SPEC_HEAT_PCB, t_pcb, (s_solder+width) * (s_solder-height) / 4.0);
p->c_pcb_per = getcap(SPEC_HEAT_PCB, t_pcb, (s_pcb*s_pcb - s_solder*s_solder) / 4.0);
/* vertical C's to ambient at PCB (divide c_convec_sec proportional to area) */
p->c_amb_sec_c_per_x = C_FACTOR * c_convec_sec / (s_pcb * s_pcb) * ((s_solder+height) * (s_solder-width) / 4.0);
p->c_amb_sec_c_per_y = C_FACTOR * c_convec_sec / (s_pcb * s_pcb) * ((s_solder+width) * (s_solder-height) / 4.0);
p->c_amb_sec_per = C_FACTOR * c_convec_sec / (s_pcb * s_pcb) * ((s_pcb*s_pcb - s_solder*s_solder) / 4.0);
}
/* debug print */
void debug_print_package_RC(package_RC_t *p)
{
fprintf(stdout, "printing package RC information...\n");
fprintf(stdout, "r_sp1_x: %f\tr_sp1_y: %f\n", p->r_sp1_x, p->r_sp1_y);
fprintf(stdout, "r_sp_per_x: %f\tr_sp_per_y: %f\n", p->r_sp_per_x, p->r_sp_per_y);
fprintf(stdout, "c_sp_per_x: %f\tc_sp_per_y: %f\n", p->c_sp_per_x, p->c_sp_per_y);
fprintf(stdout, "r_hs1_x: %f\tr_hs1_y: %f\n", p->r_hs1_x, p->r_hs1_y);
fprintf(stdout, "r_hs2_x: %f\tr_hs2_y: %f\n", p->r_hs2_x, p->r_hs2_y);
fprintf(stdout, "r_hs_c_per_x: %f\tr_hs_c_per_y: %f\n", p->r_hs_c_per_x, p->r_hs_c_per_y);
fprintf(stdout, "c_hs_c_per_x: %f\tc_hs_c_per_y: %f\n", p->c_hs_c_per_x, p->c_hs_c_per_y);
fprintf(stdout, "r_hs: %f\tr_hs_per: %f\n", p->r_hs, p->r_hs_per);
fprintf(stdout, "c_hs_per: %f\n", p->c_hs_per);
fprintf(stdout, "r_amb_c_per_x: %f\tr_amb_c_per_y: %f\n", p->r_amb_c_per_x, p->r_amb_c_per_y);
fprintf(stdout, "c_amb_c_per_x: %f\tc_amb_c_per_y: %f\n", p->c_amb_c_per_x, p->c_amb_c_per_y);
fprintf(stdout, "r_amb_per: %f\n", p->r_amb_per);
fprintf(stdout, "c_amb_per: %f\n", p->c_amb_per);
fprintf(stdout, "r_sub1_x: %f\tr_sub1_y: %f\n", p->r_sub1_x, p->r_sub1_y);
fprintf(stdout, "r_sub_per_x: %f\tr_sub_per_y: %f\n", p->r_sub_per_x, p->r_sub_per_y);
fprintf(stdout, "c_sub_per_x: %f\tc_sub_per_y: %f\n", p->c_sub_per_x, p->c_sub_per_y);
fprintf(stdout, "r_solder1_x: %f\tr_solder1_y: %f\n", p->r_solder1_x, p->r_solder1_y);
fprintf(stdout, "r_solder_per_x: %f\tr_solder_per_y: %f\n", p->r_solder_per_x, p->r_solder_per_y);
fprintf(stdout, "c_solder_per_x: %f\tc_solder_per_y: %f\n", p->c_solder_per_x, p->c_solder_per_y);
fprintf(stdout, "r_pcb1_x: %f\tr_pcb1_y: %f\n", p->r_pcb1_x, p->r_pcb1_y);
fprintf(stdout, "r_pcb2_x: %f\tr_pcb2_y: %f\n", p->r_pcb2_x, p->r_pcb2_y);
fprintf(stdout, "r_pcb_c_per_x: %f\tr_pcb_c_per_y: %f\n", p->r_pcb_c_per_x, p->r_pcb_c_per_y);
fprintf(stdout, "c_pcb_c_per_x: %f\tc_pcb_c_per_y: %f\n", p->c_pcb_c_per_x, p->c_pcb_c_per_y);
fprintf(stdout, "r_pcb: %f\tr_pcb_per: %f\n", p->r_pcb, p->r_pcb_per);
fprintf(stdout, "c_pcb_per: %f\n", p->c_pcb_per);
fprintf(stdout, "r_amb_sec_c_per_x: %f\tr_amb_sec_c_per_y: %f\n", p->r_amb_sec_c_per_x, p->r_amb_sec_c_per_y);
fprintf(stdout, "c_amb_sec_c_per_x: %f\tc_amb_sec_c_per_y: %f\n", p->c_amb_sec_c_per_x, p->c_amb_sec_c_per_y);
fprintf(stdout, "r_amb_sec_per: %f\n", p->r_amb_sec_per);
fprintf(stdout, "c_amb_sec_per: %f\n", p->c_amb_sec_per);
}
/*
* wrapper routines interfacing with those of the corresponding
* thermal model (block or grid)
*/
/*
* allocate memory for the matrices. for the block model, placeholder
* can be an empty floorplan frame with only the names of the functional
* units. for the grid model, it is the default floorplan
*/
RC_model_t *alloc_RC_model(thermal_config_t *config, flp_t *placeholder, int do_detailed_3D) //BU_3D: do_detailed_3D option added.
{
RC_model_t *model= (RC_model_t *) calloc (1, sizeof(RC_model_t));
if (!model)
fatal("memory allocation error\n");
if(!(strcasecmp(config->model_type, BLOCK_MODEL_STR))) {
model->type = BLOCK_MODEL;
model->block = alloc_block_model(config, placeholder);
model->config = &model->block->config;
} else if(!(strcasecmp(config->model_type, GRID_MODEL_STR))) {
model->type = GRID_MODEL;
model->grid = alloc_grid_model(config, placeholder, do_detailed_3D);
model->config = &model->grid->config;
} else
fatal("unknown model type\n");
return model;
}
/* populate the thermal restistance values */
void populate_R_model(RC_model_t *model, flp_t *flp)
{
if (model->type == BLOCK_MODEL)
populate_R_model_block(model->block, flp);
else if (model->type == GRID_MODEL)
populate_R_model_grid(model->grid, flp);
else fatal("unknown model type\n");
}
/* populate the thermal capacitance values */
void populate_C_model(RC_model_t *model, flp_t *flp)
{
if (model->type == BLOCK_MODEL)
populate_C_model_block(model->block, flp);
else if (model->type == GRID_MODEL)
populate_C_model_grid(model->grid, flp);
else fatal("unknown model type\n");
}
/* steady state temperature */
void steady_state_temp(RC_model_t *model, double *power, double *temp)
{
// if (model->type == BLOCK_MODEL)
// steady_state_temp_block(model->block, power, temp);
// else if (model->type == GRID_MODEL)
// steady_state_temp_grid(model->grid, power, temp);
// else fatal("unknown model type\n");
int leak_convg_true = 0;
int leak_iter = 0;
int n, base=0;
//int idx=0;
double blk_height, blk_width;
int i, j, k;
double *d_temp = NULL;
double *temp_old = NULL;
double *power_new = NULL;
double d_max=0.0;
if (model->type == BLOCK_MODEL) {
n = model->block->flp->n_units;
if (model->config->leakage_used) { // if considering leakage-temperature loop
d_temp = hotspot_vector(model);
temp_old = hotspot_vector(model);
power_new = hotspot_vector(model);
for (leak_iter=0;(!leak_convg_true)&&(leak_iter<=LEAKAGE_MAX_ITER);leak_iter++){
for(i=0; i < n; i++) {
blk_height = model->block->flp->units[i].height;
blk_width = model->block->flp->units[i].width;
power_new[i] = power[i] + calc_leakage(model->config->leakage_mode,blk_height,blk_width,temp[i]);
temp_old[i] = temp[i]; //copy temp before update
}
steady_state_temp_block(model->block, power_new, temp); // update temperature
d_max = 0.0;
for(i=0; i < n; i++) {
d_temp[i] = temp[i] - temp_old[i]; //temperature increase due to leakage
if (d_temp[i]>d_max) {
d_max = d_temp[i];
}
}
if (d_max < LEAK_TOL) {// check convergence
leak_convg_true = 1;
}
if (d_max > TEMP_HIGH && leak_iter > 1) {// check to make sure d_max is not "nan" (esp. in natural convection)
fatal("temperature is too high, possible thermal runaway. Double-check power inputs and package settings.\n");
}
}
free(d_temp);
free(temp_old);
free(power_new);
/* if no convergence after max number of iterations, thermal runaway */
if (!leak_convg_true)
fatal("too many iterations before temperature-leakage convergence -- possible thermal runaway\n");
} else // if leakage-temperature loop is not considered
steady_state_temp_block(model->block, power, temp);
}
else if (model->type == GRID_MODEL) {
if (model->config->leakage_used) { // if considering leakage-temperature loop
d_temp = hotspot_vector(model);
temp_old = hotspot_vector(model);
power_new = hotspot_vector(model);
for (leak_iter=0;(!leak_convg_true)&&(leak_iter<=LEAKAGE_MAX_ITER);leak_iter++){
for(k=0, base=0; k < model->grid->n_layers; k++) {
if(model->grid->layers[k].has_power)
for(j=0; j < model->grid->layers[k].flp->n_units; j++) {
blk_height = model->grid->layers[k].flp->units[j].height;
blk_width = model->grid->layers[k].flp->units[j].width;
power_new[base+j] = power[base+j] + calc_leakage(model->config->leakage_mode,blk_height,blk_width,temp[base+j]);
temp_old[base+j] = temp[base+j]; //copy temp before update
}
base += model->grid->layers[k].flp->n_units;
}
steady_state_temp_grid(model->grid, power_new, temp);
d_max = 0.0;
for(k=0, base=0; k < model->grid->n_layers; k++) {
if(model->grid->layers[k].has_power)
for(j=0; j < model->grid->layers[k].flp->n_units; j++) {
d_temp[base+j] = temp[base+j] - temp_old[base+j]; //temperature increase due to leakage
if (d_temp[base+j]>d_max)
d_max = d_temp[base+j];
}
base += model->grid->layers[k].flp->n_units;
}
if (d_max < LEAK_TOL) {// check convergence
leak_convg_true = 1;
}
if (d_max > TEMP_HIGH && leak_iter > 0) {// check to make sure d_max is not "nan" (esp. in natural convection)
fatal("temperature is too high, possible thermal runaway. Double-check power inputs and package settings.\n");
}
}
free(d_temp);
free(temp_old);
free(power_new);
/* if no convergence after max number of iterations, thermal runaway */
if (!leak_convg_true)
fatal("too many iterations before temperature-leakage convergence -- possible thermal runaway\n");
} else // if leakage-temperature loop is not considered
steady_state_temp_grid(model->grid, power, temp);
}
else fatal("unknown model type\n");
}
/* transient (instantaneous) temperature */
void compute_temp(RC_model_t *model, double *power, double *temp, double time_elapsed)
{
if (model->type == BLOCK_MODEL)
compute_temp_block(model->block, power, temp, time_elapsed);
else if (model->type == GRID_MODEL)
compute_temp_grid(model->grid, power, temp, time_elapsed);
else fatal("unknown model type\n");
}
/* differs from 'dvector()' in that memory for internal nodes is also allocated */
double *hotspot_vector(RC_model_t *model)
{
if (model->type == BLOCK_MODEL)
return hotspot_vector_block(model->block);
else if (model->type == GRID_MODEL)
return hotspot_vector_grid(model->grid);
else fatal("unknown model type\n");
return NULL;
}
/* copy 'src' to 'dst' except for a window of 'size'
* elements starting at 'at'. useful in floorplan
* compaction
*/
void trim_hotspot_vector(RC_model_t *model, double *dst, double *src,
int at, int size)
{
if (model->type == BLOCK_MODEL)
trim_hotspot_vector_block(model->block, dst, src, at, size);
else if (model->type == GRID_MODEL)
trim_hotspot_vector_grid(model->grid, dst, src, at, size);
else fatal("unknown model type\n");
}
/* update the model's node count */
void resize_thermal_model(RC_model_t *model, int n_units)
{
if (model->type == BLOCK_MODEL)
resize_thermal_model_block(model->block, n_units);
else if (model->type == GRID_MODEL)
resize_thermal_model_grid(model->grid, n_units);
else fatal("unknown model type\n");
}
/* sets the temperature of a vector 'temp' allocated using 'hotspot_vector' */
void set_temp(RC_model_t *model, double *temp, double val)
{
if (model->type == BLOCK_MODEL)
set_temp_block(model->block, temp, val);
else if (model->type == GRID_MODEL)
set_temp_grid(model->grid, temp, val);
else fatal("unknown model type\n");
}
/* dump temperature vector alloced using 'hotspot_vector' to 'file' */
void dump_temp(RC_model_t *model, double *temp, char *file)
{
if (model->type == BLOCK_MODEL)
dump_temp_block(model->block, temp, file);
else if (model->type == GRID_MODEL)
dump_temp_grid(model->grid, temp, file);
else fatal("unknown model type\n");
}
/* calculate average heatsink temperature for natural convection package */
double calc_sink_temp(RC_model_t *model, double *temp)
{
if (model->type == BLOCK_MODEL)
return calc_sink_temp_block(model->block, temp, model->config);
else if (model->type == GRID_MODEL)
return calc_sink_temp_grid(model->grid, temp, model->config);
else fatal("unknown model type\n");
return 0.0;
}
/* copy temperature vector from src to dst */
void copy_temp(RC_model_t *model, double *dst, double *src)
{
if (model->type == BLOCK_MODEL)
copy_temp_block(model->block, dst, src);
else if (model->type == GRID_MODEL)
copy_temp_grid(model->grid, dst, src);
else fatal("unknown model type\n");
}
/*
* read temperature vector alloced using 'hotspot_vector' from 'file'
* which was dumped using 'dump_temp'. values are clipped to thermal
* threshold based on 'clip'
*/
void read_temp(RC_model_t *model, double *temp, char *file, int clip)
{
if (model->type == BLOCK_MODEL)
read_temp_block(model->block, temp, file, clip);
else if (model->type == GRID_MODEL)
read_temp_grid(model->grid, temp, file, clip);
else fatal("unknown model type\n");
}
/* dump power numbers to file */
void dump_power(RC_model_t *model, double *power, char *file)
{
if (model->type == BLOCK_MODEL)
dump_power_block(model->block, power, file);
else if (model->type == GRID_MODEL)
dump_power_grid(model->grid, power, file);
else fatal("unknown model type\n");
}
/*
* read power vector alloced using 'hotspot_vector' from 'file'
* which was dumped using 'dump_power'.
*/
void read_power(RC_model_t *model, double *power, char *file)
{
if (model->type == BLOCK_MODEL)
read_power_block(model->block, power, file);
else if (model->type == GRID_MODEL)
read_power_grid(model->grid, power, file);
else fatal("unknown model type\n");
}
/* peak temperature on chip */
double find_max_temp(RC_model_t *model, double *temp)
{
if (model->type == BLOCK_MODEL)
return find_max_temp_block(model->block, temp);
else if (model->type == GRID_MODEL)
return find_max_temp_grid(model->grid, temp);
else fatal("unknown model type\n");
return 0.0;
}
/* average temperature on chip */
double find_avg_temp(RC_model_t *model, double *temp)
{
if (model->type == BLOCK_MODEL)
return find_avg_temp_block(model->block, temp);
else if (model->type == GRID_MODEL)
return find_avg_temp_grid(model->grid, temp);
else fatal("unknown model type\n");
return 0.0;
}
/* debug print */
void debug_print_model(RC_model_t *model)
{
if (model->type == BLOCK_MODEL)
debug_print_block(model->block);
else if (model->type == GRID_MODEL)
debug_print_grid(model->grid);
else fatal("unknown model type\n");
}
/* calculate temperature-dependent leakage power */
/* will support HotLeakage in future releases */
double calc_leakage(int mode, double h, double w, double temp)
{
/* a simple leakage model.
* Be aware -- this model may not be accurate in some cases.
* You may want to use your own temperature-dependent leakage model here.
*/
double leak_alpha = 1.5e+4;
double leak_beta = 0.036;
double leak_Tbase = 383.15; /* 110C according to the above paper */
double leakage_power;
if (mode)
fatal("HotLeakage currently is not implemented in this release of HotSpot, please check back later.\n");
leakage_power = leak_alpha*h*w*exp(leak_beta*(temp-leak_Tbase));
return leakage_power;
}
/* destructor */
void delete_RC_model(RC_model_t *model)
{
if (model->type == BLOCK_MODEL)
delete_block_model(model->block);
else if (model->type == GRID_MODEL)
delete_grid_model(model->grid);
else fatal("unknown model type\n");
free(model);
}